Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

U. T. Dallas-led research team produces strong, transparent carbon nanotube sheets

19.08.2005


Numerous electronic, optical and structural uses demonstrated; Advance reported in Aug. 19 issue of prestigious journal Science



University of Texas at Dallas (UTD) nanotechnologists and an Australian colleague have produced transparent carbon nanotube sheets that are stronger than the same-weight steel sheets and have demonstrated applicability for organic light-emitting displays, low-noise electronic sensors, artificial muscles, conducting appliqués and broad-band polarized light sources that can be switched in one ten-thousandths of a second.

Carbon nanotubes are like minute bits of string, and untold trillions of these invisible strings must be assembled to make useful macroscopic articles that can exploit the phenomenal mechanical and electronic properties of the individual nanotubes. In the Aug. 19 issue of the prestigious journal Science, scientists from the NanoTech Institute at UTD and a collaborator, Dr. Ken Atkinson from Commonwealth Scientific and Industrial Research Organization (CSIRO), a national laboratory in Australia, report such assembly of nanotubes into sheets at commercially useable rates.


Starting from chemically grown, self-assembled structures in which nanotubes are aligned like trees in a forest, the sheets are produced at up to seven meters per minute by the coordinated rotation of a trillion nanotubes per minute for every centimeter of sheet width. By comparison, the production rate for commercial wool spinning is 20 meters per minute. Unlike previous sheet fabrication methods using dispersions of nanotubes in liquids, which are quite slow, the dry-state process developed by the UTD-CSIRO team can use the ultra-long nanotubes needed for optimization of properties.

Strength normalized to weight is important for many applications, especially in space and aerospace, and this property of the nanotube sheets already exceeds that of the strongest steel sheets and the Mylar and Kapton sheets used for ultralight air vehicles and proposed for solar sails for space applications, according to the researchers. The nanotube sheets can be made so thin that a square kilometer of solar sail would weigh only 30 kilograms. While sheets normally have much lower strength than fibers or yarns, the strength of the nanotube sheets in the nanotube alignment direction already approaches the highest reported values for polymer-free nanotube yarns.

The nanotube sheets combine high transparency with high electronic conductivity, are highly flexible and provide giant gravimetric surface areas, which has enabled the team to demonstrate their use as electrodes for bright organic light emitting diodes for displays and as solar cells for light harvesting. Electrodes that can be reversibly deformed over 100 percent without losing electrical conductivity are needed for high stroke artificial muscles, and the Science article describes a simple method that makes this possible for the nanotube sheets.

The use of the nanotube sheets as planar incandescent sources of highly polarized infrared and visible radiation is also reported in the Science article. Since the nanotube sheets strongly absorb microwave radiation, which causes localized heating, the scientists were able to utilize a kitchen microwave oven to weld together plexiglas plates to make a window. Neither the electrical conductivity of the nanotube sheets nor their transparency was affected by the welding process -- which suggests a novel way to imbed these sheets as transparent heating elements and antennas for car windows. The nanotube sheets generate surprisingly low electronic noise and have an exceptionally low dependence of electronic conductivity on temperature. That suggests their possible application as high-quality sensors - which is a very active area of nanotube research.

"Rarely is a processing advance so elegantly simple that rapid commercialization seems possible, and rarely does such an advance so quickly enable diverse application demonstrations," said the article’s corresponding author, Dr. Ray H. Baughman, Robert A. Welch Professor of Chemistry and director of the UTD NanoTech Institute. "Synergistic aspects of our nanotube sheet and twisted yarn fabrication technologies likely will help accelerate the commercialization of both technologies, and UTD and CSIRO are working together with companies and government laboratories to bring both technologies to the marketplace."

The breakthroughs resulted from the diverse expertise of the article’s co-authors. Dr. Mei Zhang and Dr. Shaoli Fang, NanoTech Institute research scientists, first demonstrated the nanotube sheet fabrication process, and this result was translated into diverse applications by the entire team. The other team members include Dr. Anvar Zakhidov, associate director of the NanoTech Institute; Christopher Williams, Zakhidov’s graduate student from the UTD Physics Department; Dr. Sergey Lee and Dr. Ali Aliev, research scientists at NanoTech Institute, in addition to Atkinson and Baughman.

The applications possibilities seem even much broader than the present demonstrations, Baughman said. For example, researchers from the Regenerative Neurobiology Division at Texas Scottish Rite Hospital for Children, Dr. Mario Romero, Director, and Dr. Pedro Galvan-Garcia, Senior Researcher Associate, and Dr. Larry Cauller, associate professor in UTD’s neuroscience program, have initial evidence suggesting that healthy cells grow on these sheets - so they might eventually be applied as scaffolds for tissue growth.

Baughman said that numerous other applications possibilities exist and are being explored at UTD, including structural composites that are strong and tough; supercapacitors, batteries, fuel cells and thermal-energy-harvesting cells exploiting giant-surface-area nanotube sheet electrodes; light sources, displays, and X-ray sources that use the nanotube sheets as high-intensity sources of field-emitted electrons; and heat pipes for electronic equipment that exploit the high thermal conductivity of nanotubes. Multifunctional applications like nanotube sheets that simultaneously store energy and provide structural reinforcement for a side panel of an electrically powered vehicle also are promising, he said.

UTD researchers began collaborating with their counterparts at CSIRO last year. In November 2004, the organizations achieved a breakthrough by downsizing to the nanoscale methods used to spin wool and other fibers to produce futuristic yarns made from carbon nanotubes.

The latest research was funded by the Defense Advanced Research Projects Agency, an agency of the United States Department of Defense, the U.S. Air Force Office of Scientific Research, the Texas Advanced Technology Program, the Robert A. Welch Foundation and the Strategic Partnership for Research in Nanotechnology.

Steve McGregor | EurekAlert!
Further information:
http://www.utdallas.edu

More articles from Physics and Astronomy:

nachricht From rocks in Colorado, evidence of a 'chaotic solar system'
23.02.2017 | University of Wisconsin-Madison

nachricht Prediction: More gas-giants will be found orbiting Sun-like stars
22.02.2017 | Carnegie Institution for Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>