Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists create artificial cricket hairs

20.06.2005


Scientists have re-created one of nature’s most sensitive sound detectors – the tiny hairs found on body parts of crickets, which allow them to hear predators and make an escape before they get close enough to catch them. Published today (20th June 2005) in the Journal of Micromechanics and Microengineering, an Institute of Physics journal, this research will help scientists understand the complex physics that crickets use to perceive their surroundings and could lead to a new generation of cochlear implants, for people with severe hearing problems, in the far future.



Crickets spend most of their lives on the ground, making them vulnerable to wandering and flying predators. Species such as the wood cricket Nemobius sylvestris have developed a pair of hairy appendages at the abdominal end of their body called cerci, which are incredibly good at detecting small fluctuations in air currents – the kind that might be caused by the beating of a wasp’s wings or the jump of an attacking spider.

Each of the hairs on a cricket’s cerci is lodged in a socket, which allows them to move in a preferred direction. Airflow causes a drag force on the hair, rotating its base and firing specific neural cells, which allows the cricket to pinpoint low-frequency sound from any given direction by using the combined neural information from all the sensory hairs on the cerci.


Physicists at the University of Twente in the Netherlands have now succeeded in building artificial sensory hair systems, which they hope will enable them to unravel the underlying process and develop sensor arrays with a variety of important applications.

The Twente team, led by Gijs Krijnen and Remco Wiegerink, have shown that they can make mechanical hair sensors and are able to fabricate them in large arrays of long hairs for the first time. They have also obtained experimental results, which reveal how good these artificial cricket hairs are at sensing low-frequency sound.

The work was carried out by the MESA+ research institute at the University of Twente, as part of the European Union project CICADA (Cricket Inspired perCeption and Autonomous Decision Automata), which aims to develop a life-like perception system by studying biological concepts and trying to mimic these using the latest fabrication technologies.

Cricket hairs are incredibly energy efficient sensors, and crickets are thought to perceive flows with energies as small as or even below thermal noise levels (the background “noise” caused by the Brownian motion of particles). By evolution, the cricket has fine-tuned the hairs in order to gain as much energy from the airflow as possible.

The cricket hair canopy also shows outstanding directivity, since acoustic flow, in contrast to acoustic pressure, not only has a magnitude but also a direction. Sensitivity and directivity help crickets to perceive and escape from attacking predators, such as the wolf spider. Because of their optimised performance, cricket acoustic sensory hairs are very interesting structures to bio-mimic in man-made acoustic sensors.

The Twente team built a mechanical array with up to a few hundred artificial hairs using technologies often referred to as MEMS technology. The sensors are made by depositing and structuring various thin layers of electrically insulating and conducting materials, creating structured electrodes on a suspended membrane. The structured electrodes form two capacitors with the underlying substrate.

Long hairs, made of a photo-structurable polymer (SU-8), are put on top of the membranes. Airflow causes drag-forces on the hairs and so the membranes rotate, leading to a change in capacitance value of the capacitors.

Marcel Dijkstra, a member of the Twente team, said: "These sensors are the first step towards a variety of exciting applications as well as further scientific exploration. Their small size and low energy consumption make them excellent for application in large sensor networks, whereas there mechanical nature allows for mechanical filtering and parametric amplification. We could use them to visualise airflow on surfaces, such as an aircraft fuselage."

In a more advanced stage, the structures may form a stepping-stone towards the fabrication of hairs operating in fluids, such as found in the inner ears of mammals.

The team are now producing newer generations of hairs, which they expect to deliver sensitivities at least one order of magnitude better than what has been presented in the paper.

David Reid | alfa
Further information:
http://www.iop.org

More articles from Physics and Astronomy:

nachricht New NASA study improves search for habitable worlds
20.10.2017 | NASA/Goddard Space Flight Center

nachricht Physics boosts artificial intelligence methods
19.10.2017 | California Institute of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>