Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hubble’s deepest view ever of the Universe unveils earliest galaxies

10.03.2004


Here three galaxies just below centre are enmeshed in battle, their shapes distorted by the brutal encounter.
Credits: NASA, ESA, and S. Beckwith (STScI) and the HUDF Team


The galaxies in this panel were plucked from a harvest of nearly 10,000 galaxies in the Ultra Deep Field, the deepest visible-light image of the cosmos.
Credits: NASA, ESA, and S. Beckwith (STScI) and the HUDF Team


Astronomers today unveiled the deepest portrait of the visible Universe ever achieved by humankind. Called the Hubble Ultra Deep Field (HUDF), the million-second-long exposure reveals the first galaxies to emerge from the so-called ’dark ages’, the time shortly after the ’Big Bang’ when the first stars reheated the cold, dark Universe. The new image should offer unprecedented insights into what types of objects reheated the Universe long ago.

This historic new view is actually made up by two separate images taken by Hubble’s Advanced Camera for Surveys (ACS) and the Near Infrared Camera and Multi-object Spectrometer (NICMOS). Both images reveal some galaxies that are too faint to be seen by ground-based telescopes, or even in Hubble’s previous faraway looks, called the Hubble Deep Fields (HDFs), taken in 1995 and 1998.

The HUDF field contains an estimated 10,000 galaxies in a patch of sky just one-tenth the diameter of the full Moon. Besides the rich harvest of classic spiral and elliptical galaxies, there is a zoo of oddball galaxies littering the field. Some look like toothpicks; others like links on a bracelet. A few appear to be interacting. Their strange shapes are a far cry from the majestic spiral and elliptical galaxies we see today. These oddball galaxies chronicle a period when the Universe was more chaotic. Order and structure were just beginning to emerge.



The combination of ACS and NICMOS images will be used to search for galaxies that existed between 400 and 800 million years after the Big Bang (in cosmological terms this corresponds to a ’redshift’ range of 7 to 12). Astronomers around the world will use these data to understand whether in this very early stages the Universe appears to be the same as it did when the cosmos was between 1000 and 2000 million years old.

Hubble’s ACS allows astronomers to see galaxies two to four times fainter than Hubble could view previously, but the NICMOS sees even farther than the ACS. The NICMOS reveals the farthest galaxies ever seen because the expanding Universe has stretched their light into the near-infrared portion of the spectrum. The ACS uncovered galaxies that existed 800 million years after the Big Bang (at a redshift of 7). But the NICMOS might have spotted galaxies that lived just 400 million years after the birth of the cosmos (at a redshift of 12).

Just like the previous HDFs, the new data are expected to galvanise the astronomical community and lead to dozens of research papers that will offer new insights into the birth and evolution of galaxies. This will hold the record as the deepest-ever view of the Universe until ESA together with NASA launches the James Webb Space Telescope in 2011.

Lars Lindberg Christensen | ESA
Further information:
http://www.esa.int/esaCP/SEM30W2PGQD_Expanding_0.html

More articles from Physics and Astronomy:

nachricht Igniting a solar flare in the corona with lower-atmosphere kindling
29.03.2017 | New Jersey Institute of Technology

nachricht NASA spacecraft investigate clues in radiation belts
28.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>