Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mars Express: no signal from Beagle 2 so far

08.01.2004


ESA’s Mars Express orbiter made its first attempt to establish contact with the Beagle 2 lander, after the two spacecraft separated on 19 December 2003.

The orbiter made its first pass over the Beagle 2 landing site today at 13:13 CET, but could not pick up any signal from the tiny lander. More attempts to contact Beagle 2 are planned in the days to come.

Beagle 2 was released on 19 December on a course towards the Red Planet by Mars Express, the mothership for the 400 million kilometre interplanetary cruise. Six days later it entered the Martian atmosphere and should have landed on the near-equatorial site of Isidis Planitia.



Since then, attempts to communicate with the lander through NASA’s Mars Odyssey orbiter and radio telescopes on Earth have been unsuccessful.

The Mars Express orbiter successfully entered Mars orbit at about the same time as Beagle 2’s landing. Then, in early January, it made a series of planned manoeuvres to change its equatorial orbit to a polar one, to prepare for its scientific mission and to make contact with Beagle 2.

Unlike Mars Odyssey and the radio telescopes, Mars Express has a communication system that was fully tested to contact Beagle 2, which gives ESA more confidence of picking up the signal in the coming days.

“We have not lost hope yet to contact Beagle 2, but we also know that it has landed on an unforgiving planet,” said David Southwood, ESA’s Director of Science.

“There are still opportunities to make contact with Beagle in the days to come, and we are giving our best efforts. Nevertheless, our spacecraft Mars Express has now reached its operational orbit and is working well; I know the science community is eagerly waiting for its first results.”

Franco Bonacina | ESA
Further information:
http://www.esa.int/export/SPECIALS/Mars_Express/SEMZIJ374OD_0.html

More articles from Physics and Astronomy:

nachricht Climate cycles may explain how running water carved Mars' surface features
02.12.2016 | Penn State

nachricht What do Netflix, Google and planetary systems have in common?
02.12.2016 | University of Toronto

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>