Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nanotubes Surprise Again: Ideal Photon Emission

08.09.2003


Carbon nanotubes, recently created cylinders of tightly bonded carbon atoms, have dazzled scientists and engineers with their seemingly endless list of special abilities – from incredible tensile strength to revolutionizing computer chips. In today’s issue of Science, two University of Rochester researchers add another feat to the nanotubes’ list: ideal photon emission.



"The emission bandwidth is as narrow as you can get at room temperature," says Lukas Novotny, professor of optics at Rochester and co-author of the study. Such a narrow and steady emission can make such fields as quantum cryptography and single-molecule sensors a practical reality.

The emission profile came as a surprise to Todd Krauss, assistant professor of chemistry at the University, and Novotny. They had set out to simply define the emission, or fluorescence, of a single carbon nanotube. By using a technique called confocal microscopy, the team illuminated a single nanotube with a strongly focused laser beam. The tube absorbed the light from the laser and then re-emitted light at new frequencies that carried information about the tube’s physical characteristics and its surroundings.


The light emitted from the nanotube was in precise, discrete wavelengths, unlike most objects like molecules that radiate into a broader (i.e. more "fuzzy") range of wavelengths at room temperature.

But a greater surprise was in store for the team.

"The emission wasn’t just perfectly narrow, it was steady as far as we could measure," says Krauss. In a strange quirk of quantum physics, molecules usually emit their photons for a certain time and then cease, only to resume again later, like a telegraph signal. The tubes that Krauss and Novotny measured, however, remained steady beacons to the limits of their instruments’ sensitivity. "This is very exciting because for any application in quantum optics, you want a steady and precise photon emitter," says Novotny.

Narrow emissions and a complete absence of blinking have tempting implications for single photon emitters--devices needed to dependably release a single photon on command. The U.S. Department of Defense is very interested in developing quantum cryptography, a theoretically unbreakable method of coding information, which necessitates a reliable way to deliver single photons on demand.

Other applications come in the form of sensors so sensitive they can detect a single molecule of a substance. For example, when a biological molecule such as a protein binds to a nanotube, the nanotube’s perfect emission changes, revealing the presence and characteristics of the molecule. Detecting the change would be impossible if it weren’t for the remarkably steady nature of the nanotube emission, because a researcher wouldn’t know for certain if a sudden change in the emission was just a blink, or was meant to indicate the presence of the target molecule.

Until just a few months ago, determining the emission characteristics of a nanotube was impossible. Carbon nanotubes cannot be made individually-rather they come as a jumble like a pile of spaghetti. Trying to measure the photon emission of a tube in the jumble is impossible because the tube will pass the photons it absorbs to other tubes instead of re-emitting them in its telltale fashion. What scientists end up with is a sort of average of what the collection of tubes will emit--not the emission characteristics of a single tube. Only within the past few months have researchers figured out how to remove a single nanotube from the pile of spaghetti in order to study its properties as an individual.

Krauss and Novotny are now devising experiments to test the steadiness of the nanotube fluorescence beyond the range of the initial experiments, and are pursuing studies aimed at determining the ultimate minimum possible emission bandwidth at ultracold temperatures.

This work was funded by the National Science Foundation, the U.S. Department of Energy, the Research Corporation, and the New York State Office of Science and Academic Research.

Jonathan Sherwood | University of Rochester
Further information:
http://www.rochester.edu/pr/News/NewsReleases/scitech/Krauss-Novotny.html

More articles from Physics and Astronomy:

nachricht Igniting a solar flare in the corona with lower-atmosphere kindling
29.03.2017 | New Jersey Institute of Technology

nachricht NASA spacecraft investigate clues in radiation belts
28.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>