Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nanotubes Surprise Again: Ideal Photon Emission

08.09.2003


Carbon nanotubes, recently created cylinders of tightly bonded carbon atoms, have dazzled scientists and engineers with their seemingly endless list of special abilities – from incredible tensile strength to revolutionizing computer chips. In today’s issue of Science, two University of Rochester researchers add another feat to the nanotubes’ list: ideal photon emission.



"The emission bandwidth is as narrow as you can get at room temperature," says Lukas Novotny, professor of optics at Rochester and co-author of the study. Such a narrow and steady emission can make such fields as quantum cryptography and single-molecule sensors a practical reality.

The emission profile came as a surprise to Todd Krauss, assistant professor of chemistry at the University, and Novotny. They had set out to simply define the emission, or fluorescence, of a single carbon nanotube. By using a technique called confocal microscopy, the team illuminated a single nanotube with a strongly focused laser beam. The tube absorbed the light from the laser and then re-emitted light at new frequencies that carried information about the tube’s physical characteristics and its surroundings.


The light emitted from the nanotube was in precise, discrete wavelengths, unlike most objects like molecules that radiate into a broader (i.e. more "fuzzy") range of wavelengths at room temperature.

But a greater surprise was in store for the team.

"The emission wasn’t just perfectly narrow, it was steady as far as we could measure," says Krauss. In a strange quirk of quantum physics, molecules usually emit their photons for a certain time and then cease, only to resume again later, like a telegraph signal. The tubes that Krauss and Novotny measured, however, remained steady beacons to the limits of their instruments’ sensitivity. "This is very exciting because for any application in quantum optics, you want a steady and precise photon emitter," says Novotny.

Narrow emissions and a complete absence of blinking have tempting implications for single photon emitters--devices needed to dependably release a single photon on command. The U.S. Department of Defense is very interested in developing quantum cryptography, a theoretically unbreakable method of coding information, which necessitates a reliable way to deliver single photons on demand.

Other applications come in the form of sensors so sensitive they can detect a single molecule of a substance. For example, when a biological molecule such as a protein binds to a nanotube, the nanotube’s perfect emission changes, revealing the presence and characteristics of the molecule. Detecting the change would be impossible if it weren’t for the remarkably steady nature of the nanotube emission, because a researcher wouldn’t know for certain if a sudden change in the emission was just a blink, or was meant to indicate the presence of the target molecule.

Until just a few months ago, determining the emission characteristics of a nanotube was impossible. Carbon nanotubes cannot be made individually-rather they come as a jumble like a pile of spaghetti. Trying to measure the photon emission of a tube in the jumble is impossible because the tube will pass the photons it absorbs to other tubes instead of re-emitting them in its telltale fashion. What scientists end up with is a sort of average of what the collection of tubes will emit--not the emission characteristics of a single tube. Only within the past few months have researchers figured out how to remove a single nanotube from the pile of spaghetti in order to study its properties as an individual.

Krauss and Novotny are now devising experiments to test the steadiness of the nanotube fluorescence beyond the range of the initial experiments, and are pursuing studies aimed at determining the ultimate minimum possible emission bandwidth at ultracold temperatures.

This work was funded by the National Science Foundation, the U.S. Department of Energy, the Research Corporation, and the New York State Office of Science and Academic Research.

Jonathan Sherwood | University of Rochester
Further information:
http://www.rochester.edu/pr/News/NewsReleases/scitech/Krauss-Novotny.html

More articles from Physics and Astronomy:

nachricht Studying fundamental particles in materials
17.01.2017 | Max-Planck-Institut für Struktur und Dynamik der Materie

nachricht Seeing the quantum future... literally
16.01.2017 | University of Sydney

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>