Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Solar system ’fossils’ discovered by Hubble Telescope

08.09.2003


Astronomers using NASA’s Hubble Space Telescope have discovered three of the faintest and smallest objects ever detected beyond Neptune. Each lump of ice and rock is roughly the size of Philadelphia and orbits just beyond Neptune and Pluto, where they may have rested since the formation of the solar system 4.5 billion years ago. The objects reside in a ring-shaped region called the Kuiper Belt, which houses a swarm of icy rocks that are leftover building blocks, or "planetesimals," from the solar system’s creation.



The results of the search were announced by a group led by Gary Bernstein of the University of Pennsylvania at today’s meeting of NASA’s Division of Planetary Sciences in Monterey, Calif.

The study’s big surprise is that so few Kuiper Belt members were discovered. With Hubble’s exquisite resolution, Bernstein and his co-workers expected to find at least 60 Kuiper Belt members as small as 10 miles in diameter -- but only three were discovered.


"Discovering many fewer Kuiper Belt Objects than was predicted makes it difficult to understand how so many comets appear near Earth since many comets were thought to originate in the Kuiper Belt," said Bernstein, associate professor of physics and astronomy at Penn. "This is a sign that perhaps the smaller planetesimals have been shattered into dust by colliding with each other over the past few billion years."

Bernstein and his colleagues used Hubble to look for planetesimals that are much smaller and fainter than can be seen from ground-based telescopes. Hubble’s Advanced Camera for Surveys was pointed at a region in the constellation Virgo over a 15-day period in January and February. A bank of 10 computers on the ground worked for six months searching for faint moving spots in the Hubble images.

The three small objects the astronomers spotted - given the prosaic names 2003 BF91, 2003 BG91 and 2003 BH91 - range in size from 15 to 28 miles and are the smallest objects ever found beyond Neptune. At their current locations, these objects are a billion times fainter than the dimmest objects visible to the naked eye. But an icy body of this size that escapes the Kuiper Belt to wander near the sun can become visible from Earth as a comet as the wandering body starts to evaporate and form a surrounding cloud.

Astronomers are probing the Kuiper Belt because the region offers a window on the early history of our solar system. The planets formed more than 4 billion years ago from a cloud of gas and dust that surrounded the infant sun. Microscopic bits of ice and dust stuck together to form lumps that grew from pebbles to boulders to city- or continent-sized planetesimals. The known planets and moons are the result of collisions between planetesimals. In most of the solar system, all of the planetesimals have either been absorbed into planets or ejected into interstellar space, destroying the traces of the early days of the solar system.

Around 1950, Gerard Kuiper and Kenneth Edgeworth proposed that in the region beyond Neptune there are no planets capable of ejecting the leftover planetesimals, so there should be a zone, now called the Kuiper Belt, filled with small, icy bodies. Despite many years of searching, the first was not discovered until 1992; nearly 1,000 have since been discovered from telescopes on the ground. Most astronomers now believe that Pluto, discovered in 1930, is in fact a member of the Kuiper Belt.

Astronomers now use the Kuiper Belt to learn about the history of the solar system, much as paleontologists use fossils to study early life. Each event that affected the outer solar system -- such as possible gravitational disturbances from passing stars or long-vanished planets -- is frozen into the properties of the Kuiper Belt members that we see today.

If the Hubble telescope could search the entire sky, it would find perhaps a half-million planetesimals, but, if collected into a single planet, they would be only a few times larger than Pluto. The new Hubble observations, combined with the latest ground-based Kuiper Belt surveys, reinforce the idea that Pluto itself and its moon Charon are just large Kuiper Belt members. Why the Kuiper Belt planetesimals did not form a larger planet and why there are fewer small planetesimals than expected are questions that will be answered with further study of the Kuiper Belt. This will help to understand how planets might have formed around other stars as well.

The new results from Hubble were reported by Bernstein and David Trilling of Penn; Renu Malhotra of the University of Arizona; Lynne Allen of the University of British Columbia; Michael Brown of the California Institute of Technology; and Matthew Holman of the Harvard-Smithsonian Center for Astrophysics. The results have been submitted to the Astronomical Journal for publication.

Steve Bradt | EurekAlert!
Further information:
http://www.upenn.edu/

More articles from Physics and Astronomy:

nachricht Engineering team images tiny quasicrystals as they form
18.08.2017 | Cornell University

nachricht Astrophysicists explain the mysterious behavior of cosmic rays
18.08.2017 | Moscow Institute of Physics and Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Nagoya physicists resolve long-standing mystery of structure-less transition

21.08.2017 | Materials Sciences

Chronic stress induces fatal organ dysfunctions via a new neural circuit

21.08.2017 | Health and Medicine

Scientists from the MSU studied new liquid-crystalline photochrom

21.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>