Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A First Look at the Doughnut Around a Giant Black Hole

20.06.2003


First detection by infrared interferometry of an extragalactic object


This Photo shows an artist’s impression of an active galaxy that has jets. The central engine is thought to be a supermassive black hole surrounded by an accretion disc and enshrouded in a dusty doughnut-shaped torus. The torus of dust and gas can be seen orbiting a flatter disc of swirling gas. In the centre, the supermassive black hole is surrounded by a flat accretion disc of rapidly orbiting material. The jets are emitted at right angles from the plane of the disc. Courtesy Aurore Simonnet, Sonoma State University.


This Picture shows an image of NGC 1068 taken in the visible wavelength range (courtesy NOAO/AURA/NSF). The image has 820x680 pixels. A blow-up of the central 5x5 pixels is displayed inside the figure on the right. The circle on the central pixel indicates the size of the structure that was observed with MIDI.



Active galactic nuclei (AGN) are one of the most energetic and mysterious phenomena in the universe. In some galaxies indeed, the core generates amounts of energy which surpass those of normal galaxies, such as the Milky Way, by many orders of magnitude.

The central engine of these power stations is thought to be a supermassive black hole. Indirect lines of evidence have suggested that these massive black holes are enshrouded in a thick doughnut-shaped structure of gas and dust, which astronomers call a "torus". However, due to the limited sharpness of images that can be obtained with present telescopes in the 10-m range, such a torus has never been imaged to date.


Using the new and powerful VLT Interferometer [1] - a mode of the ESO Very Large Telescope that combines light from at least two telescopes to obtain information on very fine scales - a team of European astronomers [2] has succeeded for the first time in resolving structures in the dusty torus of the prototype AGN, the famous galaxy NGC 1068. The structures have a size of roughly 0.03 arcsec, corresponding to about 10 light-years at the distance of the galaxy.

This important achievement shows that the VLT Interferometer, using the recently inaugurated MIDI instrument [3], proves an invaluable tool in the study of objects outside our own Galaxy.

Cosmic power station

Active galaxies are among the most spectacular objects in the sky. Their compact nuclei (AGN) are so luminous that they can outshine an entire galaxy. These objects show many interesting observational characteristics over the whole electromagnetic spectrum, ranging from radio to X-ray emission.

Active galaxies take many forms: some have bright nuclei emitting high-energy (i.e. ultraviolet and X-rays) photons, some have high-energy nuclei but appear to be surrounded by a more-or-less "normal" galaxy, while some have long narrow jets or beams of matter streaming out from the centre.

There is now much evidence that the ultimate power station of these activities originate in supermassive black holes with masses up to thousands of millions times the mass of our Sun (see e.g. ESO PR 04/01). The black hole is fed from a tightly wound accretion disc encircling it. Material that falls towards such black holes will be compressed and heated up to tremendous temperatures. This hot gas radiates an enormous amount of light, causing the active galaxy nucleus to shine so brightly.

Enshrouded in the mystery torus

The central region of an active nucleus is currently believed to be surrounded by a doughnut of dense and opaque gas and dust. It was first thought that the different types of active galaxies were fundamentally different objects. Astronomers now prefer the so-called "unified" model of AGN, meaning that most or all AGN are actually just different versions of the same object. What the object looks like depends on the orientation of the doughnut on our line of sight : can we see through the doughnut hole deep into the bright centre or can we only see the opaque walls ? Some AGN appear indeed very luminous because we see straight down to the emission site, while others would be very dim, since the torus hides the central power station from our view. These doughnuts or tori are, however, very difficult to resolve because of their very small size, typically a few tens of light-years. For the nearest active galaxy, this corresponds to an estimated angular diameter less than 0.05 arcsec, much smaller than what can be observed with present single large telescopes in the 10-m range.

Since, so far, evidence for the tori is only indirect, a large variety of models has been proposed as to how these tori could be, varying from very dense and compact tori, to very extended and fluffy tori. What the astronomers really need, in order to differentiate among the models, is a direct image of a torus. But until now, no telescope could see sharp enough to spot one.

Finding a needle in a haystack

This is where interferometry with large telescopes makes a difference. Interferometry is the technique which combines two or more telescopes to achieve an angular resolution equal to that of a telescope as large as the separation of the individual ones (cf ESO PR 06/01 and 23/01). The recently inaugurated ESO Very Large Telescope Interferometer on top of the Paranal mountain has the ambitious goal of making interferometry a tool available to every astronomer. Just a few months ago, the first of the powerful instruments for the VLTI was installed, the 10 micron beam combiner mid-infrared interferometric instrument (MIDI, cf. ESO PR 25/02). This will be followed in early 2004 by the AMBER instrument [4].

MIDI is sensitive to light of a wavelength near 10 microns, i.e. in the mid-infrared spectral region (the so-called "thermal infrared"). Located at the heart of the VLT Interferometer with its multiple baselines of up to 200 m, MIDI can reach an angular resolution of about 0.01 arcsec. Combined with two powerful 8.2-m VLT Unit Telescopes, MIDI has for the first time in infrared interferometry enough sensitivity to study objects far away from our galaxy, the Milky Way.

With its high sensitivity to thermal radiation, MIDI is ideally suited to study cosmic material near a central object and heated by its radiation. The ultraviolet and optical radiation from the hot material surrounding the black hole indeed heats the dust torus to several hundred degrees. The absorbed energy is then re-radiated in the thermal infrared between 5 and 100 microns.

The MIDI instrument on the VLTI is thus the most appropriate instrument to peer at the enigmatic dust and gas tori believed to be located around giant black holes at the centres of quasars and Active Galactic Nuclei.

And since nobody has ever been able to use interferometry to study faint objects in the thermal infrared, MIDI enters into a whole unexplored territory.

On the nights of June 14 to 16, a team of European astronomers [2] conducted a first series of observations to verify the scientific potential of MIDI on the VLTI. Among them, they studied the active galaxy NGC 1068.

NGC 1068: a prototype AGN

NGC 1068 is among the brightest and most nearby active galaxies. Located in the constellation Cetus at a distance of about 60 million light years, it is also known as Messier 77. It is in fact one of the biggest galaxies in Messier’s catalogue and one of the first recognised spiral galaxies. On optical images, NGC 1068 looks indeed like a rather normal barred spiral galaxy. The core of the galaxy, however, is very luminous not only in the optical, but also in ultraviolet and X-ray light. A black hole with a mass equivalent to approximately 100 million stars like our Sun is required to account for the nuclear activity in NGC 1068.

Fringes in the distant dust: resolving the torus in NGC 1068

The MIDI observations used two of the 8.2 m VLT Unit Telescopes (Antu and Melipal), separated by a baseline of 102 m. Due to projection effects, the actual baseline for the NGC 1068 observations amounted to 79 m. While observing NGC 1068, the astronomers detected interferometric fringes. Fringes are produced when beams of light from two telescopes are brought together exactly in phase. For a point-like source, such fringes have the maximum possible theoretical contrast (i.e. 100%): the source is unresolved. However, sources of increasing angular size produce fringes with decreasing contrast. In the case of NGC 1068, the measured contrast was only about 10% of the maximum one. An exact interpretation of this result will follow in the context of additional measurements along different baselines, which are planned for this coming Autumn [5]. Already this initial result is nevertheless very convincing: the fringes were obtained with consistent values on several measurements over 2 consecutive nights, thanks also to the excellent observing conditions at the Paranal site ("seeing" values were between 0.3 and 0.6 arcsec). It is already possible to state that a structure on a spatial scale of approximately 0.03 arcsec (corresponding to about 10 light-years) has been detected in the dust torus in NGC 1068. The relative size of this structure is shown in ESO PR Photo 18b/03.

A breakthrough in interferometry

This measurement represents the first observation ever by the technique of long-baseline interferometry of an extragalactic object in the thermal infrared. This new success of the VLTI opens the door to a completely new field in astronomy: the study of gas and dust structures surrounding and feeding the biggest monsters in the universe. MIDI and the VLTI will offer for years to come the best combination for astronomers from all over the world to carry out these studies.

Notes

[1] More information about the VLTI and photos of many of the components of the facility are available at the VLTI website, as well as in ESO PR 06/01 ("First Light" in March 2001 and explanation of the interferometric measurements), ESO PR 23/01 (observations with two 8.2-m telescopes in October 2001) and ESO PR 16/02 (observations with four 8.2-m telescopes in September 2002), ESO PR 22/02 (measurements of the diameters of small stars in November 2002) and ESO PR 11/03 (installation of the first MACAO adaptive optics unit in May 2003).

[2]: The observations were planned and carried out by a team led by Andrea Richichi (ESO) and including C. Leinert, R. Koehler, K. Meisenheimer (MPIA), R. Waters (Amsterdam), F. Malbet (Grenoble), M. Schoeller, S. Morel , F. Paresce, A. Glindemann, M.Tarenghi (ESO), H. Roettgering and W. Jaffe (Leiden).

[3]: The MIDI instrument (http://www.mpia-hd.mpg.de/MIDI/) is the result of a collaboration between German, Dutch and French institutes. See ESO PR 25/02.

[4]: The AMBER instrument will equip the VLTI starting from 2004. It will cover the 1-2.5 micron range, combining up to three different telescopes. http://www.obs-nice.fr/amber/

[5]: NGC 1068 is well visible in September/October. The present measurement was obtained under demanding pointing in June, in the very last hour of the night.

Contacts:

ESO Garching
A. Richichi
Phone: +49 89 3200-6803
email: arichich@eso.org

Max-Planck-Institut für Astronomie, Heidelberg
C. Leinert
Phone: +49 6221 528 264
email: leinert@mpia.de


Leiden Observatory, The Netherlands
H. Roettgering
Phone: +31 71-5275851
email: rottgeri@strw.leidenuniv.nl

| EurekAlert!
Further information:
http://www.mpia-hd.mpg.de/MIDI
http://www.obs-nice.fr/amber

More articles from Physics and Astronomy:

nachricht Gamma rays will reach beyond the limits of light
23.10.2017 | Chalmers University of Technology

nachricht Creation of coherent states in molecules by incoherent electrons
23.10.2017 | Tata Institute of Fundamental Research

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Salmonella as a tumour medication

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Shrews shrink in winter and regrow in spring

24.10.2017 | Life Sciences

Microfluidics probe 'cholesterol' of the oil industry

23.10.2017 | Life Sciences

Gamma rays will reach beyond the limits of light

23.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>