Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Crew oxygen for ISS loaded on Jules Verne

29.01.2008
Three weeks into delicate fuelling operations, Jules Verne Automated Transfer Vehicle has also been successfully loaded with oxygen. In orbit this will be transferred to the International Space Station's atmosphere for the crew to breathe.

The maiden voyage of the first European International Space Station (ISS) resupply spaceship is targeted for no earlier than 22 February.

Since early January, the launch campaign of the Jules Verne Automated Transfer Vehicle (ATV) has intensified with the month-long loading operations. These operations take place in the huge fuelling chamber inside the vast S5 integration building at Europe's Spaceport in Kourou, French Guiana.

Teams from Astrium sites in Bremen, Lampoldshausen (Germany), Stevenage (United Kingdom) and Les Mureaux (France) are in charge of these time-consuming and delicate operations. Wearing special protective suits, the teams work in three shifts. Specialists from Thales Alenia Space, Italy, are involved in loading the highly explosive pure oxygen gas.

“The engineers first created a vacuum in the ATV gas tank and its circuit. Then, after checking the system is leak-proof, they connected the oxygen tank to transfer the gas,” said Dominique Siruguet, ESA ATV Campaign Manager. “But before this, they had to implement many strict safety procedures and create a very clean environment. This is all time consuming but necessary to avoid any risk with the highly explosive and flammable oxygen.”

Many of the safety measures are needed to prevent any hydrocarbon particles from entering the on board and ground equipment, where they would present a fire risk. For this operation, a team of certified experts, different from the ‘scapemen’ who perform the propellant fuelling, wear white non-flammable suits to handle the oxygen.

Four-tonne limit

From now until the end of the month, the largest quantity of propellant will be loaded on board Jules Verne: around 2 200 kg of MMH (Monomethylhydrazine) and 3 600 kg MON3 (Mixed Oxides of Nitrogen) propellant which will be used by ATV’s own propulsion system.

ATV will use these propellants for its autonomous navigation towards the International Space Station (ISS) and, once docked, to contribute to the Station's attitude and orbit control, including re-boost of the whole space complex. Already around 860 kg of nitrogen tetroxide oxidiser (N2O4) and Russian produced UDMH (Unsymmetrical dimehtylhydrazine) have been stored on board ATV.

With the amount of propellant in ATV about to exceed 4 tonnes, the safety rules at the Spaceport prohibit working on other satellites or spacecraft within the perimeter of the S5 integration building.

"In the first week of February, Jules Verne ATV – filled with a total 6.5 tonnes of four different propellants and 20 kg of oxygen – will be moved to the Final Assembly Building [BAF - Batiment d’Assemblage Final] where it will be mated to the Ariane 5 launcher. We then enter the Ariane 5/ATV 'combined operations plan', which ends with the final countdown," explains Nicolas Chamussy, ATV Programme Manager for EADS Astrium.

The whole Jules Verne ATV weighs 19.4 tonnes, including approximately 1 338 kg of ‘dry cargo’. During fuelling and oxygen operations, the ATV is electrically completely shut down for safety reasons. Each day the whole spacecraft is activated to check the spacecraft’s ‘health’, and charge the batteries once again.

Once in orbit, the 20 kg of oxygen carried up by Jules Verne ATV, is manually injected by the crew into the ISS atmosphere. For up to six months, the ATV remains attached, mostly in dormant mode with the hatch to the ISS open.

With the ATV docked, the Station crew can enter the cargo section and remove the payload: supplies, science hardware, and lightweight luggage bags. Meanwhile, the ATV's liquid tanks are connected to the Station's own plumbing and their propellant contents discharged.

According to the needs of the ISS and its partners, the ATV remains an integral Station element for up to six months, and delivers dry cargo, fuel, water and oxygen to the ISS.

Markus Bauer | alfa
Further information:
http://www.esa.int/SPECIALS/ATV/SEMFHO22VBF_0.html

More articles from Physics and Astronomy:

nachricht Astronomers find unexpected, dust-obscured star formation in distant galaxy
24.03.2017 | University of Massachusetts at Amherst

nachricht Gravitational wave kicks monster black hole out of galactic core
24.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>