Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Crew oxygen for ISS loaded on Jules Verne

29.01.2008
Three weeks into delicate fuelling operations, Jules Verne Automated Transfer Vehicle has also been successfully loaded with oxygen. In orbit this will be transferred to the International Space Station's atmosphere for the crew to breathe.

The maiden voyage of the first European International Space Station (ISS) resupply spaceship is targeted for no earlier than 22 February.

Since early January, the launch campaign of the Jules Verne Automated Transfer Vehicle (ATV) has intensified with the month-long loading operations. These operations take place in the huge fuelling chamber inside the vast S5 integration building at Europe's Spaceport in Kourou, French Guiana.

Teams from Astrium sites in Bremen, Lampoldshausen (Germany), Stevenage (United Kingdom) and Les Mureaux (France) are in charge of these time-consuming and delicate operations. Wearing special protective suits, the teams work in three shifts. Specialists from Thales Alenia Space, Italy, are involved in loading the highly explosive pure oxygen gas.

“The engineers first created a vacuum in the ATV gas tank and its circuit. Then, after checking the system is leak-proof, they connected the oxygen tank to transfer the gas,” said Dominique Siruguet, ESA ATV Campaign Manager. “But before this, they had to implement many strict safety procedures and create a very clean environment. This is all time consuming but necessary to avoid any risk with the highly explosive and flammable oxygen.”

Many of the safety measures are needed to prevent any hydrocarbon particles from entering the on board and ground equipment, where they would present a fire risk. For this operation, a team of certified experts, different from the ‘scapemen’ who perform the propellant fuelling, wear white non-flammable suits to handle the oxygen.

Four-tonne limit

From now until the end of the month, the largest quantity of propellant will be loaded on board Jules Verne: around 2 200 kg of MMH (Monomethylhydrazine) and 3 600 kg MON3 (Mixed Oxides of Nitrogen) propellant which will be used by ATV’s own propulsion system.

ATV will use these propellants for its autonomous navigation towards the International Space Station (ISS) and, once docked, to contribute to the Station's attitude and orbit control, including re-boost of the whole space complex. Already around 860 kg of nitrogen tetroxide oxidiser (N2O4) and Russian produced UDMH (Unsymmetrical dimehtylhydrazine) have been stored on board ATV.

With the amount of propellant in ATV about to exceed 4 tonnes, the safety rules at the Spaceport prohibit working on other satellites or spacecraft within the perimeter of the S5 integration building.

"In the first week of February, Jules Verne ATV – filled with a total 6.5 tonnes of four different propellants and 20 kg of oxygen – will be moved to the Final Assembly Building [BAF - Batiment d’Assemblage Final] where it will be mated to the Ariane 5 launcher. We then enter the Ariane 5/ATV 'combined operations plan', which ends with the final countdown," explains Nicolas Chamussy, ATV Programme Manager for EADS Astrium.

The whole Jules Verne ATV weighs 19.4 tonnes, including approximately 1 338 kg of ‘dry cargo’. During fuelling and oxygen operations, the ATV is electrically completely shut down for safety reasons. Each day the whole spacecraft is activated to check the spacecraft’s ‘health’, and charge the batteries once again.

Once in orbit, the 20 kg of oxygen carried up by Jules Verne ATV, is manually injected by the crew into the ISS atmosphere. For up to six months, the ATV remains attached, mostly in dormant mode with the hatch to the ISS open.

With the ATV docked, the Station crew can enter the cargo section and remove the payload: supplies, science hardware, and lightweight luggage bags. Meanwhile, the ATV's liquid tanks are connected to the Station's own plumbing and their propellant contents discharged.

According to the needs of the ISS and its partners, the ATV remains an integral Station element for up to six months, and delivers dry cargo, fuel, water and oxygen to the ISS.

Markus Bauer | alfa
Further information:
http://www.esa.int/SPECIALS/ATV/SEMFHO22VBF_0.html

More articles from Physics and Astronomy:

nachricht Engineering team images tiny quasicrystals as they form
18.08.2017 | Cornell University

nachricht Astrophysicists explain the mysterious behavior of cosmic rays
18.08.2017 | Moscow Institute of Physics and Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>