Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

'Invisibility cloaks' could break sound barriers

11.01.2008
Contrary to earlier predictions, Duke University engineers have found that a three-dimensional sound cloak is possible, at least in theory.

Such an acoustic veil would do for sound what the "invisibility cloak" previously demonstrated by the research team does for microwaves--allowing sound waves to travel seamlessly around it and emerge on the other side without distortion (http://www.pratt.duke.edu/news/?id=792).

"We've devised a recipe for an acoustic material that would essentially open up a hole in space and make something inside that hole disappear from sound waves," said Steven Cummer, Jeffrey N. Vinik Associate Professor of Electrical and Computer Engineering at Duke's Pratt School of Engineering. Such a cloak might hide submarines in the ocean from detection by sonar, he said, or improve the acoustics of a concert hall by effectively flattening a structural beam.

As in the case of the microwave cloak, the properties required for a sound cloak are not found among materials in nature and would require the development of artificial, composite metamaterials (For more about metamaterials, see http://www.ee.duke.edu/~drsmith/neg_ref_home.htm).

The engineering of acoustic metamaterials lags behind those that interact with electromagnetic waves (i.e. microwaves or light), but "the same ideas should apply," Cummer said.

The report by Cummer's team is expected to appear in Physical Review Letters on Jan. 11.

In 2006, researchers at Duke and the Imperial College London used a new design theory to create a blueprint for an electromagnetic invisibility cloak (http://www.pratt.duke.edu/news/?id=433). Only a few months later, the team demonstrated the first such cloak, designed to operate at microwave frequencies (http://www.pratt.duke.edu/news/?id=792).

Cummer and David Schurig, a former research associate at Duke who is now at North Carolina State University, later reported in The New Journal of Physics a theory showing that an acoustic cloak could be built. But that theory relied on a "special equivalence" between electromagnetic and sound waves that is only true in two dimensions, Cummer said. A report by another team had also suggested that a 3-D acoustic cloak couldn't exist. It appeared they had reached a dead end.

Cummer wasn't convinced. "In my mind, waves are waves," he said. "It was hard for me to imagine that something you could do with electromagnetic waves would be completely undoable for sound waves."

This time, he started instead from a shell like the microwave cloak his team had already devised and attempted to derive the mathematical specifications required to prevent such a shell from reflecting sound waves, a key characteristic for achieving invisibility. On paper, at least, it worked.

"We’ve now shown that both 2-D and 3-D acoustic cloaks theoretically do exist," Cummer said. Although the theory used to design such acoustic devices so far isn't as general as the one used to devise the microwave cloak, the finding nonetheless paves the way for other acoustic devices, for instance, those meant to bend or concentrate sound. "It opens up the door to make the physical shape of an object different from its acoustic shape," he said.

The existence of an acoustic cloaking solution also indicates that cloaks might possibly be built for other wave systems, Cummer said, including seismic waves that travel through the earth and the waves at the surface of the ocean.

Kendall Morgan | EurekAlert!
Further information:
http://www.duke.edu

More articles from Physics and Astronomy:

nachricht Transportable laser
23.01.2018 | Physikalisch-Technische Bundesanstalt (PTB)

nachricht New for three types of extreme-energy space particles: Theory shows unified origin
23.01.2018 | Penn State

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Optical Nanoscope Allows Imaging of Quantum Dots

Physicists have developed a technique based on optical microscopy that can be used to create images of atoms on the nanoscale. In particular, the new method allows the imaging of quantum dots in a semiconductor chip. Together with colleagues from the University of Bochum, scientists from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute reported the findings in the journal Nature Photonics.

Microscopes allow us to see structures that are otherwise invisible to the human eye. However, conventional optical microscopes cannot be used to image...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Rutgers scientists discover 'Legos of life'

23.01.2018 | Life Sciences

Seabed mining could destroy ecosystems

23.01.2018 | Earth Sciences

Transportable laser

23.01.2018 | Physics and Astronomy

VideoLinks Science & Research
Overview of more VideoLinks >>>