Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

'Invisibility cloaks' could break sound barriers

11.01.2008
Contrary to earlier predictions, Duke University engineers have found that a three-dimensional sound cloak is possible, at least in theory.

Such an acoustic veil would do for sound what the "invisibility cloak" previously demonstrated by the research team does for microwaves--allowing sound waves to travel seamlessly around it and emerge on the other side without distortion (http://www.pratt.duke.edu/news/?id=792).

"We've devised a recipe for an acoustic material that would essentially open up a hole in space and make something inside that hole disappear from sound waves," said Steven Cummer, Jeffrey N. Vinik Associate Professor of Electrical and Computer Engineering at Duke's Pratt School of Engineering. Such a cloak might hide submarines in the ocean from detection by sonar, he said, or improve the acoustics of a concert hall by effectively flattening a structural beam.

As in the case of the microwave cloak, the properties required for a sound cloak are not found among materials in nature and would require the development of artificial, composite metamaterials (For more about metamaterials, see http://www.ee.duke.edu/~drsmith/neg_ref_home.htm).

The engineering of acoustic metamaterials lags behind those that interact with electromagnetic waves (i.e. microwaves or light), but "the same ideas should apply," Cummer said.

The report by Cummer's team is expected to appear in Physical Review Letters on Jan. 11.

In 2006, researchers at Duke and the Imperial College London used a new design theory to create a blueprint for an electromagnetic invisibility cloak (http://www.pratt.duke.edu/news/?id=433). Only a few months later, the team demonstrated the first such cloak, designed to operate at microwave frequencies (http://www.pratt.duke.edu/news/?id=792).

Cummer and David Schurig, a former research associate at Duke who is now at North Carolina State University, later reported in The New Journal of Physics a theory showing that an acoustic cloak could be built. But that theory relied on a "special equivalence" between electromagnetic and sound waves that is only true in two dimensions, Cummer said. A report by another team had also suggested that a 3-D acoustic cloak couldn't exist. It appeared they had reached a dead end.

Cummer wasn't convinced. "In my mind, waves are waves," he said. "It was hard for me to imagine that something you could do with electromagnetic waves would be completely undoable for sound waves."

This time, he started instead from a shell like the microwave cloak his team had already devised and attempted to derive the mathematical specifications required to prevent such a shell from reflecting sound waves, a key characteristic for achieving invisibility. On paper, at least, it worked.

"We’ve now shown that both 2-D and 3-D acoustic cloaks theoretically do exist," Cummer said. Although the theory used to design such acoustic devices so far isn't as general as the one used to devise the microwave cloak, the finding nonetheless paves the way for other acoustic devices, for instance, those meant to bend or concentrate sound. "It opens up the door to make the physical shape of an object different from its acoustic shape," he said.

The existence of an acoustic cloaking solution also indicates that cloaks might possibly be built for other wave systems, Cummer said, including seismic waves that travel through the earth and the waves at the surface of the ocean.

Kendall Morgan | EurekAlert!
Further information:
http://www.duke.edu

More articles from Physics and Astronomy:

nachricht Significantly more productivity in USP lasers
06.12.2016 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Shape matters when light meets atom
05.12.2016 | Centre for Quantum Technologies at the National University of Singapore

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>