Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

'Invisibility cloaks' could break sound barriers

11.01.2008
Contrary to earlier predictions, Duke University engineers have found that a three-dimensional sound cloak is possible, at least in theory.

Such an acoustic veil would do for sound what the "invisibility cloak" previously demonstrated by the research team does for microwaves--allowing sound waves to travel seamlessly around it and emerge on the other side without distortion (http://www.pratt.duke.edu/news/?id=792).

"We've devised a recipe for an acoustic material that would essentially open up a hole in space and make something inside that hole disappear from sound waves," said Steven Cummer, Jeffrey N. Vinik Associate Professor of Electrical and Computer Engineering at Duke's Pratt School of Engineering. Such a cloak might hide submarines in the ocean from detection by sonar, he said, or improve the acoustics of a concert hall by effectively flattening a structural beam.

As in the case of the microwave cloak, the properties required for a sound cloak are not found among materials in nature and would require the development of artificial, composite metamaterials (For more about metamaterials, see http://www.ee.duke.edu/~drsmith/neg_ref_home.htm).

The engineering of acoustic metamaterials lags behind those that interact with electromagnetic waves (i.e. microwaves or light), but "the same ideas should apply," Cummer said.

The report by Cummer's team is expected to appear in Physical Review Letters on Jan. 11.

In 2006, researchers at Duke and the Imperial College London used a new design theory to create a blueprint for an electromagnetic invisibility cloak (http://www.pratt.duke.edu/news/?id=433). Only a few months later, the team demonstrated the first such cloak, designed to operate at microwave frequencies (http://www.pratt.duke.edu/news/?id=792).

Cummer and David Schurig, a former research associate at Duke who is now at North Carolina State University, later reported in The New Journal of Physics a theory showing that an acoustic cloak could be built. But that theory relied on a "special equivalence" between electromagnetic and sound waves that is only true in two dimensions, Cummer said. A report by another team had also suggested that a 3-D acoustic cloak couldn't exist. It appeared they had reached a dead end.

Cummer wasn't convinced. "In my mind, waves are waves," he said. "It was hard for me to imagine that something you could do with electromagnetic waves would be completely undoable for sound waves."

This time, he started instead from a shell like the microwave cloak his team had already devised and attempted to derive the mathematical specifications required to prevent such a shell from reflecting sound waves, a key characteristic for achieving invisibility. On paper, at least, it worked.

"We’ve now shown that both 2-D and 3-D acoustic cloaks theoretically do exist," Cummer said. Although the theory used to design such acoustic devices so far isn't as general as the one used to devise the microwave cloak, the finding nonetheless paves the way for other acoustic devices, for instance, those meant to bend or concentrate sound. "It opens up the door to make the physical shape of an object different from its acoustic shape," he said.

The existence of an acoustic cloaking solution also indicates that cloaks might possibly be built for other wave systems, Cummer said, including seismic waves that travel through the earth and the waves at the surface of the ocean.

Kendall Morgan | EurekAlert!
Further information:
http://www.duke.edu

More articles from Physics and Astronomy:

nachricht Prediction: More gas-giants will be found orbiting Sun-like stars
22.02.2017 | Carnegie Institution for Science

nachricht NASA's fermi finds possible dark matter ties in andromeda galaxy
22.02.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>