Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Rare Space Experiment Gives Clues About the Fundamental Structure of the Universe

A physics experiment using a super-fast explosion in a galaxy 7.3 billion light-years away has given scientists rare experimental evidence about the fundamental structure of space and time.

The experiment was performed by a team that includes astrophysicists at Penn State University, who used NASA's Fermi Gamma Ray Space Telescope to study particles from the explosion moving at nearly the speed of light.

The experiment confirmed aspects of Einstein's theories of gravity, which unite space and time in the concept of space-time. The team's research is published in the current online edition of the journal Nature and will be published at a later date in the print edition.

"The next major goal is to fuse quantum mechanics with gravity into a single quantum gravity theory," said Peter Meszaros, the Holder of the Eberly Family Chair in Astronomy and Astrophysics at Penn State, a Professor of Physics there, and a member of the team that did the physics experiment with the Fermi telescope. "Physicists would like to replace Einstein's vision of gravity -- as expressed in his relativity theories -- with something that handles all fundamental forces," said Peter Michelson, principal investigator of Fermi's Large Area Telescope, at Stanford University. Scientists have constructed many models to fit their ideas for the new theories, but they have few ways to test these models with physical experiments.

The opportunity to test these models occurred on 9 May 2009 at 8:23 p.m. U. S. Eastern time, when Fermi and other satellites detected the "short" gamma ray burst, designated GRB 090510, in the act of ejecting particles at 99.99995 percent of the speed of light. Astronomers say this type of explosion likely occurred in the distant galaxy during an annihilating collision between neutron stars.

Many approaches to new theories of quantum gravity picture space-time as having a shifting, frothy structure at physical scales trillions of times smaller than an electron. Some models predict that such a foamy structure would cause higher-energy gamma rays to move slightly more slowly than photons at lower energy. "Such models would violate Einstein's postulate that all electromagnetic radiation -- radio waves, infrared rays, visible light, X-rays, and gamma rays -- travel through a vacuum at the same speed," said Meszaros. "But different versions of quantum gravity predict different degrees of violation of this postulate, and we need to separate the wheat from the chaff."

Of the many gamma-ray photons detected by Fermi from the 2.1-second burst, two had energies differing by a million times. Yet after traveling some seven billion years, the pair of photons arrived just nine-tenths of a second apart. "This measurement eliminates any approach to a new theory of gravity that predicts a strong energy-dependent change in the speed of light," Michelson said. The long-distance experiment showed that "To one part in 100 million billion, these two photons traveled at the same speed. "Einstein still rules," Michelson said.

As a result of the new space experiment, Meszaros further explained, "Any viable theory of quantum gravity must be one that predicts either a weaker violation of the speed-of-light constancy than that which we measured, or none at all."

In addition to Mészáros, other Penn State scientists on the research team include Xuefeng Wu, a research associate, and Kenji Toma, a postdoctoral scholar.

[ Barbara Kennedy / Francis Reddy ]

Peter Meszaros: (+1) 814-865-0418,
Barbara Kennedy (PIO): 814-863-4682,
NASA's Fermi Gamma Ray Space Telescope is an astrophysics and particle physics partnership, developed in collaboration with the U.S. Department of Energy, along with important contributions from academic institutions and partners in France, Germany, Italy, Japan, Sweden and the United States.

Barbara K. Kennedy | EurekAlert!
Further information:

More articles from Physics and Astronomy:

nachricht Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1
21.03.2018 | Fraunhofer-Institut für Hochfrequenzphysik und Radartechnik FHR

nachricht Taming chaos: Calculating probability in complex systems
21.03.2018 | American Institute of Physics

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

TRAPPIST-1 planets provide clues to the nature of habitable worlds

21.03.2018 | Physics and Astronomy

The search for dark matter widens

21.03.2018 | Materials Sciences

Natural enemies reduce pesticide use

21.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>