Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rare Space Experiment Gives Clues About the Fundamental Structure of the Universe

03.11.2009
A physics experiment using a super-fast explosion in a galaxy 7.3 billion light-years away has given scientists rare experimental evidence about the fundamental structure of space and time.

The experiment was performed by a team that includes astrophysicists at Penn State University, who used NASA's Fermi Gamma Ray Space Telescope to study particles from the explosion moving at nearly the speed of light.

The experiment confirmed aspects of Einstein's theories of gravity, which unite space and time in the concept of space-time. The team's research is published in the current online edition of the journal Nature and will be published at a later date in the print edition.

"The next major goal is to fuse quantum mechanics with gravity into a single quantum gravity theory," said Peter Meszaros, the Holder of the Eberly Family Chair in Astronomy and Astrophysics at Penn State, a Professor of Physics there, and a member of the team that did the physics experiment with the Fermi telescope. "Physicists would like to replace Einstein's vision of gravity -- as expressed in his relativity theories -- with something that handles all fundamental forces," said Peter Michelson, principal investigator of Fermi's Large Area Telescope, at Stanford University. Scientists have constructed many models to fit their ideas for the new theories, but they have few ways to test these models with physical experiments.

The opportunity to test these models occurred on 9 May 2009 at 8:23 p.m. U. S. Eastern time, when Fermi and other satellites detected the "short" gamma ray burst, designated GRB 090510, in the act of ejecting particles at 99.99995 percent of the speed of light. Astronomers say this type of explosion likely occurred in the distant galaxy during an annihilating collision between neutron stars.

Many approaches to new theories of quantum gravity picture space-time as having a shifting, frothy structure at physical scales trillions of times smaller than an electron. Some models predict that such a foamy structure would cause higher-energy gamma rays to move slightly more slowly than photons at lower energy. "Such models would violate Einstein's postulate that all electromagnetic radiation -- radio waves, infrared rays, visible light, X-rays, and gamma rays -- travel through a vacuum at the same speed," said Meszaros. "But different versions of quantum gravity predict different degrees of violation of this postulate, and we need to separate the wheat from the chaff."

Of the many gamma-ray photons detected by Fermi from the 2.1-second burst, two had energies differing by a million times. Yet after traveling some seven billion years, the pair of photons arrived just nine-tenths of a second apart. "This measurement eliminates any approach to a new theory of gravity that predicts a strong energy-dependent change in the speed of light," Michelson said. The long-distance experiment showed that "To one part in 100 million billion, these two photons traveled at the same speed. "Einstein still rules," Michelson said.

As a result of the new space experiment, Meszaros further explained, "Any viable theory of quantum gravity must be one that predicts either a weaker violation of the speed-of-light constancy than that which we measured, or none at all."

In addition to Mészáros, other Penn State scientists on the research team include Xuefeng Wu, a research associate, and Kenji Toma, a postdoctoral scholar.

[ Barbara Kennedy / Francis Reddy ]

CONTACTS
Peter Meszaros: (+1) 814-865-0418, pmeszaros@astro.psu.edu
Barbara Kennedy (PIO): 814-863-4682, science@psu.edu
ABOUT THE FERMI TELESCOPE
NASA's Fermi Gamma Ray Space Telescope is an astrophysics and particle physics partnership, developed in collaboration with the U.S. Department of Energy, along with important contributions from academic institutions and partners in France, Germany, Italy, Japan, Sweden and the United States.

Barbara K. Kennedy | EurekAlert!
Further information:
http://www.science.psu.edu/alert/Meszaros-2009/.htm
http://www.psu.edu

More articles from Physics and Astronomy:

nachricht Climate cycles may explain how running water carved Mars' surface features
02.12.2016 | Penn State

nachricht What do Netflix, Google and planetary systems have in common?
02.12.2016 | University of Toronto

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>