Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Radiation damage bigger problem in microelectronics than previously thought

23.07.2012
The amount of damage that radiation causes in electronic materials may be at least ten times greater than previously thought.

That is the surprising result of a new characterization method that uses a combination of lasers and acoustic waves to provide scientists with a capability tantamount to X-ray vision: It allows them to peer through solid materials to pinpoint the size and location of detects buried deep inside with unprecedented precision.

The research, which was conducted by post-doctoral fellow Andrew Steigerwald under the supervision of Physics Professor Norman Tolk, was published online on July 19 in the Journal of Applied Physics.

"The ability to accurately measure the defects in electronic materials becomes increasingly important as the size of microelectronic devices continues to shrink," Tolk explained. "When an individual transistor contains millions of atoms, it can absorb quite a bit of damage before it fails. But when a transistor contains a few thousand atoms, a single defect can cause it to stop working."

Previous methods used to study damage in electronic materials have been limited to looking at defects and deformations in the atomic lattice. The new method is the first that is capable of detecting disruption in the positions of the electrons that are attached to the atoms. This is particularly important because it is the behavior of the electrons that determine a material's electrical and optical properties.

"An analogy is a thousand people floating in a swimming pool. The people represent the atoms and the water represents the electrons," said Steigerwald. "If another person – representing an energetic particle – jumps into the pool, the people in his vicinity change their positions slightly to make room for him. However, these shifts can be fairly subtle and difficult to measure. But the jumper will also cause quite a splash and cause the level of the water in the pool to rise. Much like the water in the pool, the electrons in a material are more sensitive to defects than the atoms."

To detect the electron dislocations, the physicists upgraded a 15-year-old method called coherent acoustic phonon spectroscopy (CAPS).

"CAPS is similar to the seismic techniques that energy companies use to search for underground oil deposits, only on a much smaller scale," said Steigerwald.

Oil explorers set off a series of small explosions on the surface and measure the sound waves that are reflected back to the surface. That allows them to identify and map the layers of different types of rock thousands of feet underground.

Similarly, CAPS generates a pressure wave that passes through a chunk of semiconductor by blasting its surface with an ultrafast pulse of laser light. As this happens, the researchers bounce a second laser off the pressure wave and measure the strength of the reflection. As the pressure wave encounters defects and deformities in the material, its reflectivity changes and this alters the strength of the reflected laser light. By measuring these variations, the physicists can detect individual defects and measure the effect that they have on the material's electrical and optical properties.

The physicists tested their technique on a layer of gallium arsenide semiconductor that they had irradiated with high-energy neon atoms. They found that the structural damage caused by an embedded neon atom spread over a volume containing 1,000 atoms – considerably more extensive than that shown by other techniques.

"This is significant because today people are creating nanodevices that contain thousands of atoms," said Steigerwald. One of these devices is a solar collector made from quantum dots, tiny semiconductor beads that each contains a few thousand atoms. "Our results may explain recent studies that have found that these quantum-dot solar collectors are less efficient than predicted," he said.

"The fact is that we really don't understand how any atomic-scale defect affects the performance on an optoelectronic device," said Tolk. "Techniques like the one that we have developed will give us the detailed information we need to figure this out and so help people make nanodevices that work properly."

Research Associate Professor Anthony B. Hmelo, Assistant Professor Kalman Varga and Stevenson Professor of Physics Leonard Feldman also contributed to the research.

The research was supported by Department of Energy grant FG02-99ER45781, Army Research Office grant W911NF-07-R-0003-02 and National Science Foundation grant ECCS0925422. In addition, portions of the work were performed at the Vanderbilt Institute of Nanoscale Science and Engineering, using facilities renovated with the NSF grant ARI-RW DMR-096331.

Visit Research News @ Vanderbilt for more research news from Vanderbilt. [Media Note: Vanderbilt has a 24/7 TV and radio studio with a dedicated fiber optic line and ISDN line. Use of the TV studio with Vanderbilt experts is free, except for reserving fiber time.]

David Salisbury | EurekAlert!
Further information:
http://www.vanderbilt.edu

More articles from Physics and Astronomy:

nachricht From rocks in Colorado, evidence of a 'chaotic solar system'
23.02.2017 | University of Wisconsin-Madison

nachricht Prediction: More gas-giants will be found orbiting Sun-like stars
22.02.2017 | Carnegie Institution for Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>