Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Quantum optics with microwaves

08.05.2013
Quantum mechanics, famously, is full of effects that defy our basic intuition.

A fine example is the Hong-Ou-Mandel effect, which occurs when two light quanta (or, photons) arrive simultaneously at a so-called beam splitter. As its name implies, a beam splitter is a device that splits one beam of light into two, by transmitting one half of the impinging light and reflecting the other half.

For a single quantum of light, a photon, this means that it has a 50-percent chance to appear on either side of the device. But when two photons arrive at the same time at the splitter, something unexpected happens: The photons then always emerge as a pair on the same side of the beam splitter, either both on one side or both on the other side. Never do the two photons exit on different sides.

This counterintuitive effect has been first demonstrated in 1987 by Chung K. Hong, Zhe-Yu Ou and Leonard Mandel using laser light. The experiment has been repeated many times since, but all of these demonstrations use photons in the optical range (which is the frequency range of visible light). Andreas Wallraff, a professor at the Department of Physics, and his co-workers now break out of this regime and demonstrate for the first time the Hong-Ou-Mandel effect for microwave radiation, at frequencies around 100'000 times below those of a typical laser.

Even if there is no fundamental reason to believe that quantum theory would make a distinction between "microwave photons" and "optical photons", this demonstration puts this equivalence across a huge frequency range on a firm experimental footing. Moreover, the lower frequency of the microwave photons enabled a more complete characterization of the effect than has been able so far with optical photons, opening up new possibilities to characterize radiation sources. Finally, the new experiment highlights how quantum optical effects can be exploited in experiments with microwave sources, which may lead to practical applications of "microwave optics".

Microwaves bit by bit

Wallraff and his team used microwaves whose frequency is comparable to that of a common microwave oven. Their source of microwave radiation, however, couldn't have been more different from a household device. The scientists use microfabricated millimeter-sized circuits for generating microwaves that come in single photons. "We can generate individual microwave photons on demand, whenever we need one ," says Christopher Eichler, scientist in the Wallraff group. This is something that is not easily achieved with single-photon sources in the optical regime. Whereas a laser can be conveniently turned on and off, optical single-photon sources typically involve intricate processes that are much harder to control. The microwave sources have also the advantage that their frequencies can be accurately tuned, such that two independent devices produce photons at the exact same frequency. This is a prerequisite for observing the Hong-Ou-Mandel effect.

In the experiment of Wallraff and his group, the microwave photons indeed displayed the counterintuitive behavior predicted by theory. Whenever two photons reached the beam splitter at the same time, they left it in pairs. But the experiment is more than simply a repetition of the optics experiment at microwave frequencies. "As the frequency of microwave radiation is much lower than that of visible light, we were able to fully characterize the effect in all its facets. For example, we can vary the degree of how distinguishable the two photons are and can, therefore, finely control the appearance and disappearance of the effect," explains Christian Lang, a PhD student in the group of Wallraff and first author of the study. "I think it's fair to say that we have produced the so far most complete characterization of the Hong-Ou-Mandel effect," adds Wallraff. "As such, we have now an analytical tool to study microwave radiation in the quantum regime. This may be helpful to characterize non-conventional microwave sources, which are used in several quantum experiments."

Microwaves do light work

Beyond these more fundamental aspects, the findings of the ETH physicists may open up new perspectives for practical applications, too. Historically, the Hong-Ou-Mandel effect has been so important as it was one of the earliest experiments that showed how quantum mechanical effects make light do things that cannot be explained within the framework of classical physics. This then led to theoretical and experimental work on how quantum mechanics can help in computation and communication.

The new work, which shows one of the quintessential quantum optical effects with microwave photons, can be seen as a first step towards translating these findings into the regime of microwaves, which may offer unique advantages concerning how photons can be generated, manipulated, and detected. "In the longer run, this may lead to novel forms of quantum communication and quantum information processing," says Wallraff.

Bibliography

Lang C, Eichler C, Steffen L, Fink JM, Woolley MJ, Blais A, Wallraff A: Correlations, indistinguishability and entanglement in Hong-Ou-Mandel experiments at microwave frequencies. Nature Physics, 2013, doi: 10.1038/nphys2612

Andreas Wallraff | EurekAlert!
Further information:
http://www.ethz.ch

More articles from Physics and Astronomy:

nachricht Physicists Design Ultrafocused Pulses
27.07.2017 | Universität Innsbruck

nachricht CCNY physicists master unexplored electron property
26.07.2017 | City College of New York

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

Programming cells with computer-like logic

27.07.2017 | Life Sciences

Identified the component that allows a lethal bacteria to spread resistance to antibiotics

27.07.2017 | Life Sciences

Malaria Already Endemic in the Mediterranean by the Roman Period

27.07.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>