Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Planck reveals magnetic fingerprint of our galaxy

07.05.2014

The team—which includes researchers from the University of British Columbia and the Canadian Institute for Theoretical Astrophysics (CITA) at the University of Toronto—created the map using data from the Planck Space Telescope. Since 2009, Planck has charted the Cosmic Microwave Background (CMB), the light from the Universe a mere 380,000 years after the Big Bang.

But Planck also observes light from much closer than the farthest reaches of time and space. With an instrument called the High Frequency Instrument (HFI), Planck detects the light from microscopic dust particles within our Galaxy. (The density of this dust is incredibly low; a volume of space equal to a large sports stadium or arena would contain one grain.)

Planck's HFI identifies the non-random direction in which the light waves vibrate—known as polarization. It is this polarized light that indicates the orientation of the field lines.

"Just as the Earth has a magnetic field, our Galaxy has a large-scale magnetic field—albeit 100,000 times weaker than the magnetic field at the Earth's surface," says team member Prof. Douglas Scott (UBC). "And just as the Earth's magnetic field generates phenomena such as the aurorae, our Galaxy's magnetic field is important for many phenomena within it."

For example, the magnetic field governs the coupling of the motions of gas and dust between stars, and so plays a role in star formation and the dynamics of cosmic rays.

"And now," says Scott, "Planck has given us the most detailed picture of it yet."

The "fingerprint" and other results are described in four papers to released May 6 (links below) and to be published in the journal Astronomy & Astrophysics.

Prof. Peter Martin (CITA) uses Planck data to study the dust found throughout our Galaxy. According to Martin, "Dust is often overlooked but it contains the stuff from which terrestrial planets and life form. So by probing the dust, Planck helps us understand the complex history of the Galaxy as well as the life within it."

Also, for cosmologists studying the origin and evolution of the Universe, data to be released later this year by scientists from the Planck collaboration should allow astronomers to separate with great confidence any possible foreground signal from our Galaxy from the tenuous, primordial, polarized signal from the CMB. In March 2014, scientists from the BICEP2 collaboration claimed the first detection of such a signal.

The Planck data will enable a much more detailed investigation of the early history of the cosmos, from the accelerated expansion when the Universe was much less than one second old to the period when the first stars were born, several hundred million years later.

And according to Prof. J. Richard Bond (CITA), "These results help us lift the veil of emissions from these tiny but pervasive Galactic dust grains which obscure a Planck goal of peering into the earliest moments of the Big Bang to find evidence for gravitational waves created in that epoch, as reported by BICEP2."

###

Planck includes contributions from the Canadian Space Agency (CSA). The CSA funds two Canadian research teams that are part of the Planck science collaboration, and who helped develop both of Planck's complementary science instruments, the High Frequency Instrument (HFI) and the Low Frequency Instrument (LFI). Professors J. Richard Bond of the University of Toronto (Director of Cosmology and Gravity at the Canadian Institute for Advanced Research) and Douglas Scott of the University of British Columbia lead the Canadian Planck team, which includes members from the University of Alberta, Université Laval and McGill University.

Contacts:

Professor Peter Martin
Canadian Institute for Theoretical Astrophysics
University of Toronto
p: 416-978-6840
e: pgmartin@cita.utoronto.ca

Professor Douglas Scott
Department of Physics & Astronomy
University of British Columbia
p: 604-822-2802
e: dscott@phas.ubc.ca

Professor J. Richard Bond
Canadian Institute for Theoretical Astrophysics
University of Toronto
p: 416-978-6874
e: bond@cita.utoronto.ca

Brian Lin
Senior Media Relations Specialist, Public Affairs Office
The University of British Columbia
p: 604-822-2234
cell: 604-818-5685
e: brian.lin@ubc.ca

Chris Sasaki
Communications Coordinator
Dunlap Institute for Astronomy & Astrophysics
University of British Columbia
p: 416-978-6613
e: csasaki@dunlap.utoronto.ca

Brian Lin | Eurek Alert!
Further information:
http://www.ubc.ca

Further reports about: Astronomy Astrophysics CITA Frequency Galaxy Universe emissions motions phenomena waves

More articles from Physics and Astronomy:

nachricht NASA's Fermi Telescope helps link cosmic neutrino to blazar blast
02.05.2016 | NASA/Goddard Space Flight Center

nachricht 2+1 is Not Always 3 - In the microworld unity is not always strength
02.05.2016 | Max-Planck-Institut für Intelligente Systeme

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: 2+1 is Not Always 3 - In the microworld unity is not always strength

If a person pushes a broken-down car alone, there is a certain effect. If another person helps, the result is the sum of their efforts. If two micro-particles are pushing another microparticle, however, the resulting effect may not necessarily be the sum their efforts. A recent study published in Nature Communications, measured this odd effect that scientists call “many body.”

In the microscopic world, where the modern miniaturized machines at the new frontiers of technology operate, as long as we are in the presence of two...

Im Focus: Tiny microbots that can clean up water

Researchers from the Max Planck Institute Stuttgart have developed self-propelled tiny ‘microbots’ that can remove lead or organic pollution from contaminated water.

Working with colleagues in Barcelona and Singapore, Samuel Sánchez’s group used graphene oxide to make their microscale motors, which are able to adsorb lead...

Im Focus: ORNL researchers discover new state of water molecule

Neutron scattering and computational modeling have revealed unique and unexpected behavior of water molecules under extreme confinement that is unmatched by any known gas, liquid or solid states.

In a paper published in Physical Review Letters, researchers at the Department of Energy's Oak Ridge National Laboratory describe a new tunneling state of...

Im Focus: Bionic Lightweight Design researchers of the Alfred Wegener Institute at Hannover Messe 2016

Honeycomb structures as the basic building block for industrial applications presented using holo pyramid

Researchers of the Alfred Wegener Institute (AWI) will introduce their latest developments in the field of bionic lightweight design at Hannover Messe from 25...

Im Focus: New world record for fullerene-free polymer solar cells

Polymer solar cells can be even cheaper and more reliable thanks to a breakthrough by scientists at Linköping University and the Chinese Academy of Sciences (CAS). This work is about avoiding costly and unstable fullerenes.

Polymer solar cells can be even cheaper and more reliable thanks to a breakthrough by scientists at Linköping University and the Chinese Academy of Sciences...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

The “AC21 International Forum 2016” is About to Begin

27.04.2016 | Event News

Soft switching combines efficiency and improved electro-magnetic compatibility

15.04.2016 | Event News

Grid-Supportive Buildings Give Boost to Renewable Energy Integration

12.04.2016 | Event News

 
Latest News

Identifying drug targets for leukaemia

02.05.2016 | Life Sciences

Clay nanotube-biopolymer composite scaffolds for tissue engineering

02.05.2016 | Materials Sciences

NASA's Fermi Telescope helps link cosmic neutrino to blazar blast

02.05.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>