Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pinball at the atomic level

30.03.2017

Scientists from the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at CFEL (Center for Free-Electron Laser Science) in Hamburg and of the University of Edinburgh have currently discovered a new intermediate state for the photodissociation of triiodide anion, a classic textbook reaction.

The photodissociation of triiodide anion ([I₃]⁻) is a classic textbook reaction that has been extensively studied both in solution and in gas phase. However, probing the ultrafast dynamics of this reaction in the solid state was proven challenging due to partial reversibility of the reaction and its sensitivity to experimental conditions.


The picture illustrates the photodissociation of triiodide initiated by a laser pulse and the secondary reaction leading to the novel 4-atom intermediate, followed by the recombination reaction.

Image from R. Xian et al. Nat. Chem. (2017), DOI: 10.1038/nchem.2751

Due to an improved sample handling a team of scientists from the MPSD at CFEL and the University of Edinburgh has currently discovered a new reaction intermediate, the tetraiodide radical anion ([I₄]• ⁻), formed as a result of the unique ordering of [I₃]⁻ in the crystal lattice to direct the dissociating I atom - in a process reminiscent of a quantum Newton's cradle. The results have now been published in Nature Chemistry.

In the solution phase, the triiodide anions photodissociates predominantly into iodine radical ([I]•) and diiodide ([I₂]•⁻) radicals. The surrounding solvent plays a passive role in the inertial confinement of the reaction products that ultimately undergo geminate and non-geminate recombination.

In contrast, a dramatically different behavior was found in the ordered ionic lattice of tetra-n-butylammonium triiodide crystals. Here, the local geometry constrains the reaction and, hence, the primary photoproduct, iodine radical ([I]•), is guided by the lattice to form a bond with an adjacent ([I₃]⁻), giving rise to a secondary reaction product, the tetraiodide radical anion ([I₄]• ⁻), not described before for this reaction. As shown in the figure, the reactants are literally aligned in the lattice to form this four-atom intermediate.

“The dissociated iodine atoms collide in a quantum type of a Newton’s cradle with other triiodide molecules to form this novel reaction product” explains Dwayne Miller, and he adds “most importantly, we have demonstrated that lattice can coherently direct the reaction pathway of solid-state photochemistry on femto- to picosecond time scales.”

This phenomenon was only observable thanks to new sample-handling, data collection and analysis techniques developed at the MPSD together with theoretical calculations carried out at the University of Edinburgh to support the electronic and vibrational assignments of the various reaction participants, which enabled the most detailed resolution to date of the reaction intermediates as well as the coherent modes driving the triiodide photodissociation reaction.

“These observations provide a different conceptual framework to think about reaction processes and may point the way in how to couple chemical systems to a bath as a means to increase the length scales under chemical control”, concludes Miller.

Weitere Informationen:

http://www.mpsd.mpg.de/en/research/ard/ard - Research website of Prof. Miller
https://dx.doi.org/10.1038/nchem.2751 - Original publication at Nature Chemistry

Dr. Joerg Harms | Max-Planck-Institut für Struktur und Dynamik der Materie

Further reports about: Materie Max-Planck-Institut atomic level crystal lattice iodine

More articles from Physics and Astronomy:

nachricht NASA detects solar flare pulses at Sun and Earth
17.11.2017 | NASA/Goddard Space Flight Center

nachricht Pluto's hydrocarbon haze keeps dwarf planet colder than expected
16.11.2017 | University of California - Santa Cruz

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>