Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Physicists Find that Size Matters When Initiating an Object's Movement Through Grains

30.09.2008
A team of Penn State physicists has discovered that the size of grains, such as sand grains, under which an object is buried is important in determining the force required to begin raising the object.

No one, until now, has discovered how much force is required to initiate an object's movement through grains. The result may be useful for engineering foundations for objects to be anchored in sandy soils, such as power-line towers, or for designing industrial mixer blades, such as those used in pharmaceutical processing. The team's paper is published this month in the journal Physical Review Letters.

"We found that less force is needed to lift an object that is buried beneath small grains than is needed to lift an object that is buried beneath larger grains," said Peter Schiffer, associate vice president for research and a professor of physics at Penn State. "Basically, if you are buried alive and you have to push open a coffin lid, it’s better to be buried under fine-grained sand than under pebbles," he said.

According to Schiffer, other researchers have examined how much force is required to maintain an object's movement through grains, but no one previously had looked at how much force is required to initiate it. "The two measurements are different," he said. "When initiating the movement of an object, the grains immediately above the object must be shifted out of the way to make space for the object to move, which requires that the surrounding grains be loosened. In contrast, an object that already is in motion requires less force to maintain that motion because the surrounding grains are already loosened. It’s the loosening of grains around the object that seems to make the difference," said Schiffer.

The scientists built an apparatus that measures the force required to push a flat circular plate upward from the bottom of a cylindrical bucket that is filled with glass beads. The team measured the force using different sizes of glass beads and found that the smallest beads required the least amount of force to lift the plate. "The total weight of the grains above the plate was adjusted so that it was the same regardless of grain size," said Dan Costantino, a Penn State graduate student and one of the paper's lead author.

In the future, the team plans to measure the force required to initiate the horizontal movement of an object through grains. They also plan to substitute water or a heavy liquid for the air in between the grains. "A liquid that has the same density as the grains will effectively make the grains weightless, so we can further investigate whether the strength of grains comes from their weight or from the way they are packaged together," said Costantino.

This research was supported by NASA and the National Science Foundation.
Sara LaJeunesse
CONTACTS
Peter Schiffer: (+1) 814-863-9658, pes12@psu.edu
Dan Costantino: (+1) 814-865-7260, djc321@psu.edu
Barbara Kennedy (PIO): 814-863-4682, science@psu.edu

Barbara K. Kennedy | EurekAlert!
Further information:
http://www.psu.edu
http://www.science.psu.edu/alert/Schiffer9-2008.htm

More articles from Physics and Astronomy:

nachricht Astronomers find unexpected, dust-obscured star formation in distant galaxy
24.03.2017 | University of Massachusetts at Amherst

nachricht Gravitational wave kicks monster black hole out of galactic core
24.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>