Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

ORNL study advances quest for better superconducting materials

28.01.2014
Nearly 30 years after the discovery of high-temperature superconductivity, many questions remain, but an Oak Ridge National Laboratory team is providing insight that could lead to better superconductors.

Their work, published in Physical Review Letters, examines the role of chemical dopants, which are essential to creating high-temperature superconductors – materials that conduct electricity without resistance.


Minghu Pan's image of "clover-like" atomic defects — an example is circled — that result in strong superconductivity.

The role of dopants in superconductors is particularly mysterious as they introduce non-uniformity and disorder into the crystal structure, which increases resistivity in non-superconducting materials.

By gaining a better understanding of how and why chemical dopants alter the behavior of the original (parent) material, scientists believe they can design superconductors that work at higher temperatures. This would make them more practical for real-world wire applications because it would lessen the extreme cooling required for conventional superconducting material. Existing "high-temperature superconductors” operate at temperatures in the range of negative 135 degrees Celsius and below.

“Through this work, we have created a framework that allows us to understand the interplay of superconductivity and inhomogeneity,” said lead author Krzysztof Gofryk, a post-doctoral fellow in the Department of Energy laboratory’s Materials Science and Technology Division. “Thus, for the first time we have a clearer picture of the side effects of dopants.”

ORNL’s Athena Safa-Sefat, who led the team, noted that while scientists have made progress since the first observation of superconductivity in the Dutch province of South Holland in 1911, they still do not know what causes some complex multicomponent materials to be superconductive at high temperatures. Additional progress will most likely hinge on answering fundamental questions regarding the interactions of atoms with the crystal, and this work represents a step forward.

“Our bulk and atomic-scale measurements on an iron-based superconductor have revealed that strong superconductivity comes from highly doped regions in the crystal where dopants are clustered,” Sefat said. “If we can design a crystal where such clusters join in an organized manner, we can potentially produce a much higher performance superconductor.”

While several companies manufacture superconducting materials that have been used in specialty applications and demonstration settings, widespread adoption is restricted by cost and complexity. An ideal superconducting wire would be constructed from inexpensive, earth-abundant non-toxic elements. It will also be low-cost for the manufacture of long lengths that are round and flexible and feature good mechanical – non-brittle – properties with a high superconducting temperature.

Other authors of the paper, titled “Local inhomogeneity and filamentary superconductivity in Pr-doped CaFe2As2,” are Minghu Pan, Claudia Cantoni, Bayrammurad Saparov and Jonathan Mitchell. This research was funded by DOE’s Office of Science.

UT-Battelle manages ORNL for the Department of Energy’s Office of Science. DOE’s Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of the time. For more information, please visit science.energy.gov.

Ron Walli | EurekAlert!
Further information:
http://www.ornl.gov
http://www.ornl.gov/ornl/news/news-releases/2014/ornl-study-advances-quest-for-better-superconducting-materials

More articles from Physics and Astronomy:

nachricht One-way roads for spin currents
23.05.2018 | Singapore University of Technology and Design

nachricht Tunable diamond string may hold key to quantum memory
23.05.2018 | Harvard John A. Paulson School of Engineering and Applied Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Research reveals how order first appears in liquid crystals

23.05.2018 | Life Sciences

Space-like gravity weakens biochemical signals in muscle formation

23.05.2018 | Life Sciences

NIST puts the optical microscope under the microscope to achieve atomic accuracy

23.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>