Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

ORNL study advances quest for better superconducting materials

28.01.2014
Nearly 30 years after the discovery of high-temperature superconductivity, many questions remain, but an Oak Ridge National Laboratory team is providing insight that could lead to better superconductors.

Their work, published in Physical Review Letters, examines the role of chemical dopants, which are essential to creating high-temperature superconductors – materials that conduct electricity without resistance.


Minghu Pan's image of "clover-like" atomic defects — an example is circled — that result in strong superconductivity.

The role of dopants in superconductors is particularly mysterious as they introduce non-uniformity and disorder into the crystal structure, which increases resistivity in non-superconducting materials.

By gaining a better understanding of how and why chemical dopants alter the behavior of the original (parent) material, scientists believe they can design superconductors that work at higher temperatures. This would make them more practical for real-world wire applications because it would lessen the extreme cooling required for conventional superconducting material. Existing "high-temperature superconductors” operate at temperatures in the range of negative 135 degrees Celsius and below.

“Through this work, we have created a framework that allows us to understand the interplay of superconductivity and inhomogeneity,” said lead author Krzysztof Gofryk, a post-doctoral fellow in the Department of Energy laboratory’s Materials Science and Technology Division. “Thus, for the first time we have a clearer picture of the side effects of dopants.”

ORNL’s Athena Safa-Sefat, who led the team, noted that while scientists have made progress since the first observation of superconductivity in the Dutch province of South Holland in 1911, they still do not know what causes some complex multicomponent materials to be superconductive at high temperatures. Additional progress will most likely hinge on answering fundamental questions regarding the interactions of atoms with the crystal, and this work represents a step forward.

“Our bulk and atomic-scale measurements on an iron-based superconductor have revealed that strong superconductivity comes from highly doped regions in the crystal where dopants are clustered,” Sefat said. “If we can design a crystal where such clusters join in an organized manner, we can potentially produce a much higher performance superconductor.”

While several companies manufacture superconducting materials that have been used in specialty applications and demonstration settings, widespread adoption is restricted by cost and complexity. An ideal superconducting wire would be constructed from inexpensive, earth-abundant non-toxic elements. It will also be low-cost for the manufacture of long lengths that are round and flexible and feature good mechanical – non-brittle – properties with a high superconducting temperature.

Other authors of the paper, titled “Local inhomogeneity and filamentary superconductivity in Pr-doped CaFe2As2,” are Minghu Pan, Claudia Cantoni, Bayrammurad Saparov and Jonathan Mitchell. This research was funded by DOE’s Office of Science.

UT-Battelle manages ORNL for the Department of Energy’s Office of Science. DOE’s Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of the time. For more information, please visit science.energy.gov.

Ron Walli | EurekAlert!
Further information:
http://www.ornl.gov
http://www.ornl.gov/ornl/news/news-releases/2014/ornl-study-advances-quest-for-better-superconducting-materials

More articles from Physics and Astronomy:

nachricht Astronomers find unexpected, dust-obscured star formation in distant galaxy
24.03.2017 | University of Massachusetts at Amherst

nachricht Gravitational wave kicks monster black hole out of galactic core
24.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>