Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Observed by Texas telescope: Light from huge explosion 12 billion years ago reaches Earth

05.06.2014

Known as a gamma-ray burst, the intense light captured in the night sky resulted from one of the biggest and hottest explosions in the universe, occurring shortly after the Big Bang.

Intense light from the enormous explosion of a star more than 12 billion years ago — shortly after the Big Bang — recently reached Earth and was visible in the sky.


Gamma-ray burst 1404191 was spotted at 11 p.m. April 19 by SMU’s robotic ROTSE-IIIb telescope at McDonald Observatory, Fort Davis, Texas.

Known as a gamma-ray burst, light from the rare, high-energy explosion traveled for 12.1 billion years before it was detected and observed by a telescope, ROTSE-IIIb, owned by Southern Methodist University, Dallas.

Gamma-ray bursts are believed to be the catastrophic collapse of a star at the end of its life. SMU physicists report that their telescope was the first on the ground to observe the burst and to capture an image, said Farley Ferrante, a graduate student in SMU’s Department of Physics, who monitored the observations along with two astronomers in Turkey and Hawaii.

... more about:
»Earth »Gamma-ray »Methodist »NASA »SMU »Swift »images »supernovae

Recorded as GRB 140419A by NASA’s Gamma-ray Coordinates Network, the burst was spotted at 11 p.m. April 19 by SMU’s robotic telescope at the McDonald Observatory in the Davis Mountains of West Texas.

Gamma-ray bursts are not well understood by astronomers, but they are considered important, Ferrante said.

“As NASA points out, gamma-ray bursts are the most powerful explosions in the universe since the Big Bang,” he said. “These bursts release more energy in 10 seconds than our Earth’s sun during its entire expected lifespan of 10 billion years.”

Some of these gamma-ray bursts appear to be related to supernovae, and correspond to the end-of-life of a massive star, said Robert Kehoe, physics professor and leader of the SMU astronomy team.

“Gamma-ray bursts may be particularly massive cousins to supernovae, or may correspond to cases in which the explosion ejecta are more beamed in our direction. By studying them, we learn about supernovae,” Kehoe said.

Scientists weren’t able to detect optical light from gamma-ray bursts until the late 1990s, when telescope technology improved. Among all lights in the electromagnetic spectrum, gamma rays have the shortest wavelengths and are visible only using special detectors.

Gamma-ray bursts result from hot stars that measure as enormous as 50 solar masses. The explosion occurs when the stars run out of fuel and collapse in on themselves, forming black holes.

Outer layers detonate, shooting out material along the rotation axis in powerful, high-energy jets that include gamma radiation.

As the gamma radiation declines, the explosion produces an afterglow of visible optical light. The light, in turn, fades very quickly, said Kehoe. Physicists calculate the distance of the explosion based on the shifting wavelength of the light, or redshift.

“The optical light is visible for anywhere from a few seconds to a few hours,” Kehoe said. “Sometimes optical telescopes can capture the spectra. This allows us to calculate the redshift of the light, which tells us how fast the light is moving away from us. This is an indirect indication of the distance from us.”

Observational data from gamma-ray bursts allows scientists to understand structure of the early universe
To put into context the age of the new gamma-ray burst discoveries, Kehoe and Ferrante point out that the Big Bang occurred 13.81 billion years ago. GRB 140419A is at a red shift of 3.96, Ferrante said.

Armed with images of the burst, astronomers can analyze the observational data to draw further conclusions about the structure of the early universe.

“At the time of this gamma-ray burst’s explosion, the universe looked vastly different than it does now,” Kehoe said. “It was an early stage of galaxy formation. There weren’t heavy elements to make Earth-like planets. So this is a glimpse at the early universe. Observing gamma-ray bursts is important for gaining information about the early universe.”

GRB 140419A’s brightness, measured by its ability to be seen by someone on Earth, was of the 12th magnitude, Kehoe said, indicating it was only 10 times dimmer than what is visible through binoculars, and only 200 times dimmer than the human eye can see, Kehoe said.

“The difference in brightness is about the same as between the brightest star you can see in the sky, and the dimmest you can see with the naked eye on a clear, dark night,” Kehoe said. “Considering this thing was at the edge of the visible universe, that’s an extreme explosion. That was something big. Really big.”

SMU telescope responded to NASA satellite’s detection and notification
SMU’s Robotic Optical Transient Search Experiment (ROTSE) IIIb is a robotic telescope. It is part of a network of ground telescopes responsive to a NASA satellite that is central to the space agency’s Swift Gamma-Ray Burst Mission. Images of the gamma-ray bursts are at http://bit.ly/1kKZeh5.

When the Swift satellite detects a gamma-ray burst, it instantly relays the location. Telescopes around the world, such as SMU’s ROTSE-IIIb, swing into action to observe the burst’s afterglow and capture images, said Govinda Dhungana, an SMU graduate student who participated in the gamma-ray burst research.

SMU’s ROTSE-IIIb observes optical emission from several gamma-ray bursts each year. It observed GRB 140419A just 55 seconds after the burst was detected by Swift.

Just days later, ROTSE-IIIb observed and reported a second rare and distant gamma-ray burst, GRB 140423A, at 3:30 a.m. April 23. The redshift of that burst corresponds to a look back in time of 11.8 billion years. ROTSE-IIIb observed it 51 seconds after the burst was detected by Swift.

“We have the brightest detection and the earliest response on both of those because our telescope is fully robotic and no human hands were involved,” Ferrante said.

Ferrante, the first to check observations on GRB 140423A, is first-author on that gamma-ray burst. Tolga Guver, associate professor in the Department of Astronomy and Space Sciences at Istanbul University, Turkey, is second author. On GRB 140419A, Guver is first author and Ferrante is second.

The research is funded by the Texas Space Grant Consortium, an affiliate of NASA. — Margaret Allen

SMU is a nationally ranked private university in Dallas founded 100 years ago. Today, SMU enrolls nearly 11,000 students who benefit from the academic opportunities and international reach of seven degree-granting schools. For more information see www.smu.edu.

SMU has an uplink facility located on campus for live TV, radio, or online interviews. To speak with an SMU expert or book an SMU guest in the studio, call SMU News & Communications at 214-768-7650.

Margaret Allen | Eurek Alert!
Further information:
http://blog.smu.edu/research/2014/06/03/texas-telescope-spots-light-reaching-earth-from-rare-huge-explosion-12-billion-years-ago/

Further reports about: Earth Gamma-ray Methodist NASA SMU Swift images supernovae

More articles from Physics and Astronomy:

nachricht From rocks in Colorado, evidence of a 'chaotic solar system'
23.02.2017 | University of Wisconsin-Madison

nachricht Prediction: More gas-giants will be found orbiting Sun-like stars
22.02.2017 | Carnegie Institution for Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

NASA eyes Pineapple Express soaking California

24.02.2017 | Earth Sciences

New gene for atrazine resistance identified in waterhemp

24.02.2017 | Agricultural and Forestry Science

New Mechanisms of Gene Inactivation may prevent Aging and Cancer

24.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>