Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New method for measuring the temperature of nanoscale objects discovered

05.05.2014

Temperature measurements in our daily life are typically performed by bringing a thermometer in contact with the object to be measured. However, measuring the temperature of nanoscale objects is a much more tricky task due to their size - up to a thousand times smaller than the width of a human hair.

Pioneering research, published in Nature Nanotechnology, has now developed a method to accurately measure the surface temperature of nanoscale objects when they have a different temperature than their environment. A team led by Dr Janet Anders at the University of Exeter and Professor Peter Barker at University College London have discovered that the surface temperatures of nanoscale objects can be determined from analysing their jittery movement in air - known as Brownian motion.

"This motion is caused by the collisions with the air molecules" said Dr Anders, a quantum information theorist and member of the Physics and Astronomy department at the University of Exeter. "We found that the impact of such collisions carries information about the object's surface temperature, and have used our observation of its Brownian motion to identify this information and infer the temperature."

The scientists conducted their research by trapping a glass nanosphere in a laser beam and suspending it in air. The sphere was then heated and it was possible to observe rising temperatures on the nanoscale until the glass got so hot that it melted. This technique could even discern different temperatures across the surface of the tiny sphere.

"When working with objects on the nanoscale, collisions with air molecules make a big difference", says Dr. James Millen from the team at University College London. "By measuring how energy is transferred between nanoparticles and the air around them we learn a lot about both".

Accurate knowledge of temperature is needed in many nanotechnological devices because their operation strongly depends on temperature. The discovery also informs current research which is working towards bringing large objects into a quantum superposition state. It further impacts on the study of aerosols in the atmosphere and opens the door for the study of processes that are out of equilibrium in a controlled setting.

Brownian motion is named after the Scottish botanist Robert Brown who, in 1827, noted that pollen move through water even when the water is perfectly still. Albert Einstein published a paper in 1905 that explained in precise detail how this movement was a result of the pollen being pushed by individual water molecules, eventually leading to the acceptance of the atomistic nature of all matter in science.

This research was funded by the Engineering and Physical Science Research Council (EPSRC).

For further information please contact:

Duncan Sandes
University of Exeter Press Office
+44 (0)1392 722405 or 722062
d.sandes@exeter.ac.uk
Twitter: @UoE_ScienceNews

About the University of Exeter

The University of Exeter is a Russell Group university and in the top one percent of institutions globally. It combines world-class research with very high levels of student satisfaction. Exeter has over 18,000 students and is ranked 8th in The Times and The Sunday Times Good University Guide league table, 10th in The Complete University Guide and 12th in the Guardian University Guide 2014. In the 2008 Research Assessment Exercise (RAE) 90% of the University's research was rated as being at internationally recognised levels and 16 of its 31 subjects are ranked in the top 10, with 27 subjects ranked in the top 20. Exeter was The Sunday Times University of the Year 2012-13.

The University has invested strategically to deliver more than £350 million worth of new facilities across its campuses in the last few years; including landmark new student services centres - the Forum in Exeter and The Exchange on the Penryn Campus in Cornwall, together with world-class new facilities for Biosciences, the Business School and the Environment and Sustainability Institute. There are plans for another £330 million of investment between now and 2016.

http://www.exeter.ac.uk

For further information:

University of Exeter
Press Office
+44 (0)1392 722405 or 722062
pressoffice@exeter.ac.uk

Duncan Sandes | Eurek Alert!
Further information:
http://www.exeter.ac.uk

Further reports about: Guide collisions glass levels movement nanoscale objects temperature temperatures

More articles from Physics and Astronomy:

nachricht Streamlining accelerated computing for industry
24.08.2016 | DOE/Oak Ridge National Laboratory

nachricht Lehigh engineer discovers a high-speed nano-avalanche
24.08.2016 | Lehigh University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Streamlining accelerated computing for industry

PyFR code combines high accuracy with flexibility to resolve unsteady turbulence problems

Scientists and engineers striving to create the next machine-age marvel--whether it be a more aerodynamic rocket, a faster race car, or a higher-efficiency jet...

Im Focus: X-ray optics on a chip

Waveguides are widely used for filtering, confining, guiding, coupling or splitting beams of visible light. However, creating waveguides that could do the same for X-rays has posed tremendous challenges in fabrication, so they are still only in an early stage of development.

In the latest issue of Acta Crystallographica Section A: Foundations and Advances , Sarah Hoffmann-Urlaub and Tim Salditt report the fabrication and testing of...

Im Focus: Piggyback battery for microchips: TU Graz researchers develop new battery concept

Electrochemists at TU Graz have managed to use monocrystalline semiconductor silicon as an active storage electrode in lithium batteries. This enables an integrated power supply to be made for microchips with a rechargeable battery.

Small electrical gadgets, such as mobile phones, tablets or notebooks, are indispensable accompaniments of everyday life. Integrated circuits in the interiors...

Im Focus: UCI physicists confirm possible discovery of fifth force of nature

Light particle could be key to understanding dark matter in universe

Recent findings indicating the possible discovery of a previously unknown subatomic particle may be evidence of a fifth fundamental force of nature, according...

Im Focus: Wi-fi from lasers

White light from lasers demonstrates data speeds of up to 2 GB/s

A nanocrystalline material that rapidly makes white light out of blue light has been developed by KAUST researchers.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

The energy transition is not possible without Geotechnics

25.08.2016 | Event News

New Ideas for the Shipping Industry

24.08.2016 | Event News

A week of excellence: 22 of the world’s best computer scientists and mathematicians in Heidelberg

12.08.2016 | Event News

 
Latest News

Environmental DNA uncovers biodiversity in rivers

30.08.2016 | Ecology, The Environment and Conservation

Solar houses scientifically evaluated

30.08.2016 | Power and Electrical Engineering

Amazon forests: Biodiversity can help mitigate climate risks

30.08.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>