Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New method for measuring the temperature of nanoscale objects discovered

05.05.2014

Temperature measurements in our daily life are typically performed by bringing a thermometer in contact with the object to be measured. However, measuring the temperature of nanoscale objects is a much more tricky task due to their size - up to a thousand times smaller than the width of a human hair.

Pioneering research, published in Nature Nanotechnology, has now developed a method to accurately measure the surface temperature of nanoscale objects when they have a different temperature than their environment. A team led by Dr Janet Anders at the University of Exeter and Professor Peter Barker at University College London have discovered that the surface temperatures of nanoscale objects can be determined from analysing their jittery movement in air - known as Brownian motion.

"This motion is caused by the collisions with the air molecules" said Dr Anders, a quantum information theorist and member of the Physics and Astronomy department at the University of Exeter. "We found that the impact of such collisions carries information about the object's surface temperature, and have used our observation of its Brownian motion to identify this information and infer the temperature."

The scientists conducted their research by trapping a glass nanosphere in a laser beam and suspending it in air. The sphere was then heated and it was possible to observe rising temperatures on the nanoscale until the glass got so hot that it melted. This technique could even discern different temperatures across the surface of the tiny sphere.

"When working with objects on the nanoscale, collisions with air molecules make a big difference", says Dr. James Millen from the team at University College London. "By measuring how energy is transferred between nanoparticles and the air around them we learn a lot about both".

Accurate knowledge of temperature is needed in many nanotechnological devices because their operation strongly depends on temperature. The discovery also informs current research which is working towards bringing large objects into a quantum superposition state. It further impacts on the study of aerosols in the atmosphere and opens the door for the study of processes that are out of equilibrium in a controlled setting.

Brownian motion is named after the Scottish botanist Robert Brown who, in 1827, noted that pollen move through water even when the water is perfectly still. Albert Einstein published a paper in 1905 that explained in precise detail how this movement was a result of the pollen being pushed by individual water molecules, eventually leading to the acceptance of the atomistic nature of all matter in science.

This research was funded by the Engineering and Physical Science Research Council (EPSRC).

For further information please contact:

Duncan Sandes
University of Exeter Press Office
+44 (0)1392 722405 or 722062
d.sandes@exeter.ac.uk
Twitter: @UoE_ScienceNews

About the University of Exeter

The University of Exeter is a Russell Group university and in the top one percent of institutions globally. It combines world-class research with very high levels of student satisfaction. Exeter has over 18,000 students and is ranked 8th in The Times and The Sunday Times Good University Guide league table, 10th in The Complete University Guide and 12th in the Guardian University Guide 2014. In the 2008 Research Assessment Exercise (RAE) 90% of the University's research was rated as being at internationally recognised levels and 16 of its 31 subjects are ranked in the top 10, with 27 subjects ranked in the top 20. Exeter was The Sunday Times University of the Year 2012-13.

The University has invested strategically to deliver more than £350 million worth of new facilities across its campuses in the last few years; including landmark new student services centres - the Forum in Exeter and The Exchange on the Penryn Campus in Cornwall, together with world-class new facilities for Biosciences, the Business School and the Environment and Sustainability Institute. There are plans for another £330 million of investment between now and 2016.

http://www.exeter.ac.uk

For further information:

University of Exeter
Press Office
+44 (0)1392 722405 or 722062
pressoffice@exeter.ac.uk

Duncan Sandes | Eurek Alert!
Further information:
http://www.exeter.ac.uk

Further reports about: Guide collisions glass levels movement nanoscale objects temperature temperatures

More articles from Physics and Astronomy:

nachricht Discovery of an Extragalactic Hot Molecular Core
29.09.2016 | National Astronomical Observatory of Japan

nachricht Swiss space research reaches for the sky
29.09.2016 | Schweizerischer Nationalfonds SNF

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New welding process joins dissimilar sheets better

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of light metals.
Scientists at the University of Stuttgart have now developed two new process variants that will considerably expand the areas of application for friction stir welding.
Technologie-Lizenz-Büro (TLB) GmbH supports the University of Stuttgart in patenting and marketing its innovations.

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of...

Im Focus: First quantum photonic circuit with electrically driven light source

Optical quantum computers can revolutionize computer technology. A team of researchers led by scientists from Münster University and KIT now succeeded in putting a quantum optical experimental set-up onto a chip. In doing so, they have met one of the requirements for making it possible to use photonic circuits for optical quantum computers.

Optical quantum computers are what people are pinning their hopes on for tomorrow’s computer technology – whether for tap-proof data encryption, ultrafast...

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

HLF: From an experiment to an establishment

29.09.2016 | Event News

European Health Forum Gastein 2016 kicks off today

28.09.2016 | Event News

Laser use for neurosurgery and biofabrication - LaserForum 2016 focuses on medical technology

27.09.2016 | Event News

 
Latest News

New Multiferroic Materials from Building Blocks

29.09.2016 | Materials Sciences

Silicon Fluorescent Material Developed Enabling Observations under a Bright “Biological Optical Window”

29.09.2016 | Materials Sciences

X-shape Bio-inspired Structures

29.09.2016 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>