Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA's Swift Satellite Tallies Water Production of Mars-bound Comet

20.06.2014

In late May, NASA's Swift satellite imaged comet Siding Spring, which will brush astonishingly close to Mars later this year. These optical and ultraviolet observations are the first to reveal how rapidly the comet is producing water and allow astronomers to better estimate its size. 

"Comet Siding Spring is making its first passage through the inner solar system and is experiencing its first strong heating from the sun," said lead researcher Dennis Bodewits, an astronomer at the University of Maryland College Park (UMCP). "These observations are part of a two-year-long Swift campaign to watch how the comet's activity develops during its travels."


This composite of C/2013 A1 (Siding Spring) merges Swift UVOT images taken between May 27 and 29, 2014. Sunlight reflected from the comet's dust, which produces most of the light in this image, appears yellow; violet shows ultraviolet light produced by hydroxyl (OH), a molecular fragment of water.

Image Credit: NASA/Swift/D. Bodewits (UMD), DSS

"Fresh" comets like Siding Spring, which is formally known as C/2013 A1, contain some of the most ancient material scientists can study. The solid part of a comet, called its nucleus, is a clump of frozen gases mixed with dust and is often described as a "dirty snowball." Comets cast off gas and dust whenever they venture near enough to the sun.

What powers this activity is the transformation of frozen material from solid ice to gas, a process called sublimation. As the comet approaches the sun and becomes heated, different gases stream from the nucleus, carrying with them large quantities of dust that reflect sunlight and brighten the comet. By about two and a half times Earth's distance from the sun (2.5 astronomical units, or AU), the comet has warmed enough that water becomes the primary gas emitted by the nucleus.

Between May 27 and 29, Swift's Ultraviolet/Optical Telescope (UVOT) captured a sequence of images as comet Siding Spring cruised through the constellation Eridanus at a distance of about 2.46 AU (229 million miles or 368 million km) from the sun. While the UVOT cannot detect water molecules directly, it can detect light emitted by fragments formed when ultraviolet sunlight breaks up water -- specifically, hydrogen atoms and hydroxyl (OH) molecules.

"Based on our observations, we calculate that at the time of the observations the comet was producing about 2 billion billion billion water molecules, equivalent to about 13 gallons or 49 liters, each second," said team member Tony Farnham, a senior research scientist at UMCP. At this rate, comet Siding Spring could fill an Olympic-size swimming pool in about 14 hours. Impressive as it sounds, though, this is relatively modest water emission compared to other comets Swift has observed.

Based on these measurements, the team concludes that the icy nucleus of comet Siding Spring is only about 2,300 feet (700 meters) across, placing it at the lower end of a size range estimated from earlier observations by other spacecraft.

The comet makes its closest approach to Mars on Oct. 19, passing just 86,000 miles (138,000 km) from the Red Planet -- so close that gas and dust in the outermost reaches of the comet's atmosphere, or coma, will interact with the atmosphere of Mars.

For comparison, the closest recorded Earth approach by a comet was by the now-defunct comet Lexell, which on July 1, 1770, swept to within 1.4 million miles (2.3 million km) or about six times farther than the moon. During its Mars flyby, comet Siding Spring will pass more than 16 times closer than this.  

Scientists have established that the comet poses no danger to spacecraft now in orbit around Mars. These missions will be pressed into service as a provisional comet observation fleet to take advantage of this unprecedented opportunity.

The Swift observations are part of a larger study to investigate the activity and evolution of new comets, which show distinct brightening characteristics as they approach the sun not seen in other comets. Bodewits and his colleagues single out comets that can be observed by Swift at distances where water has not yet become the primary gas and repeatedly observe them as they course through the inner solar system. This systematic study will help astronomers better understand how comet activity changes with repeated solar heating.

Related links:

Mars & Comets: Siding Spring (C/2013 A1)
http://mars.nasa.gov/comets/sidingspring/

NASA's Hubble Space Telescope Spots Mars-Bound Comet Sprout Multiple Jets (03.27.2014)
http://www.nasa.gov/press/2014/march/nasas-hubble-space-telescope-spots-mars-bound-comet-sprout-multiple-jets/

NASA's Swift Monitors Departing Comet Garradd (4.13.2012)
http://www.nasa.gov/mission_pages/swift/bursts/comet-garradd.html

Swift’s Comet Tally Highlighted in Observatory Webcast (04.03.2009)
http://www.nasa.gov/mission_pages/swift/bursts/observatory_webcast.html

NASA's Swift Spies Comet Lulin (02.20.2009)
http://www.nasa.gov/mission_pages/swift/bursts/lulin.html

NASA's Swift Looks to Comets for a Cool View (12.03.2008)
http://www.nasa.gov/mission_pages/swift/bursts/cool_comet.html

 

Francis Reddy

NASA's Goddard Space Flight Center, Greenbelt, Maryland

Francis Reddy | Eurek Alert!

Further reports about: Mars NASA Production Swift Telescope activity comets observations spacecraft

More articles from Physics and Astronomy:

nachricht Scientists explain how the giant magnetoelectric effect occurs in bismuth ferrite
23.05.2016 | Moscow Institute of Physics and Technology

nachricht Physicists create first metamaterial with rewritable magnetic ordering
23.05.2016 | University of Notre Dame

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers demonstrate size quantization of Dirac fermions in graphene

Characterization of high-quality material reveals important details relevant to next generation nanoelectronic devices

Quantum mechanics is the field of physics governing the behavior of things on atomic scales, where things work very differently from our everyday world.

Im Focus: Graphene: A quantum of current

When current comes in discrete packages: Viennese scientists unravel the quantum properties of the carbon material graphene

In 2010 the Nobel Prize in physics was awarded for the discovery of the exceptional material graphene, which consists of a single layer of carbon atoms...

Im Focus: Transparent - Flexible - Printable: Key technologies for tomorrow’s displays

The trend-forward world of display technology relies on innovative materials and novel approaches to steadily advance the visual experience, for example through higher pixel densities, better contrast, larger formats or user-friendler design. Fraunhofer ISC’s newly developed materials for optics and electronics now broaden the application potential of next generation displays. Learn about lower cost-effective wet-chemical printing procedures and the new materials at the Fraunhofer ISC booth # 1021 in North Hall D during the SID International Symposium on Information Display held from 22 to 27 May 2016 at San Francisco’s Moscone Center.

Economical processing

Im Focus: Trojan horses for hospital bugs

Staphylococcus aureus usually is a formidable bacterial pathogen. Sometimes, however, weakened forms are found in the blood of patients. Researchers of the University of Würzburg have now identified one mutation responsible for that phenomenon.

Staphylococcus aureus is a bacterium that is frequently found on the human skin and in the nose where it usually behaves inconspicuously. However, once inside...

Im Focus: Laser pulses: conductors for protons

Using ultrashort laser pulses an international team at the Max Planck Institute of Quantum Optics and the Ludwig-Maximilians-Universität Munich has managed to manipulate the positions of atoms in hydrocarbon molecules.

Light can conduct the play of atoms and molecules in the microcosm. Humans manage to interfere with this play. Researchers from the Laboratory of Attosecond...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Challenges of rural labor markets

20.05.2016 | Event News

International expert meeting “Health Business Connect” in France

19.05.2016 | Event News

Permafrost Conference in Potsdam, Germany

17.05.2016 | Event News

 
Latest News

Autonomous driving: emergence of new billion euro market

23.05.2016 | Information Technology

NEST: building of the future is up and running

23.05.2016 | Architecture and Construction

Researchers find that Earth may be home to 1 trillion species

23.05.2016 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>