Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA's SDO Mission Untangles Motion Inside the Sun

29.08.2013
Using an instrument on NASA's Solar Dynamics Observatory, called the Helioseismic and Magnetic Imager, or HMI, scientists have overturned previous notions of how the sun's writhing insides move from equator to pole and back again, a key part of understanding how the dynamo works. Modeling this system also lies at the heart of improving predictions of the intensity of the next solar cycle.

Using SDO, scientists see a performance of explosions and fountains on the solar surface. Shots of solar material leap into the air. Dark blemishes called sunspots grow, combine and disappear as they travel across the sun's face. Bright loops of charged particles – captured by magnetic fields dancing around the sun – hover in the atmosphere.


Observations by the Helioseismic and Magnetic Imager on NASA's Solar Dynamics Observatory show a two-level system of circulation inside the sun. Such circulation is connected to the flip of the sun's north and south magnetic poles that occurs approximately every 11 years. Image Credit: Stanford

This dynamic display is all powered by a complex, ever-changing magnetic current inside the sun known as the dynamo. This magnetic system flips approximately every 11 years, with magnetic north and magnetic south switching poles. This process is an integral part of the sun's progression toward a pinnacle of solar activity, known as solar maximum.

The team's recent results show that, instead of a simple cycle of flow moving toward the poles near the sun's surface and then back to the equator, the material inside the sun shows a double layer of circulation, with two such cycles on top of each other. The results appear online in the Astrophysical Journal Letters on Aug. 27, 2013.

"For decades people have known that the solar cycle depends on the poleward flow or material, changing the magnetic fields from one cycle to the next," said Philip Scherrer, principal investigator for HMI at Stanford University in Stanford, Calif. "We mapped out what we believed to be the flow pattern in the 1990s, but the results didn't quite make sense."

Since the mid-1990s researchers have been observing movement inside the sun using a technique called helioseismology. The technique makes use of the fact that waves course across the sun, back and forth, oscillating with an approximately five minute period. Such waves are similar to the seismic waves that spread out under the ground during an earthquake. By monitoring the oscillations seen at the surface of the sun, scientists can gather information about the material through which the waves traveled, including what the material is made of and how fast and in what direction it is moving.

Such observations quickly showed scientists how material inside the sun rotates from east to west: material moves more slowly at the poles than it does at the equator. The observations also soon showed that material moved from the equators toward the poles within the top 20,000 miles of the sun's surface – but the flow back toward the equator from the poles was not detected. Early models of all this moving material, therefore, assumed that the equator-ward flow was much lower, only occurring at the bottom of the convection layer of the sun that houses these flows, some 125,000 miles down.

"Scientists have used this assumption to describe the solar dynamo," said Junwei Zhao, a helioseismologist at Stanford University in Stanford, Calif., who is the first author on the paper. "And now we have found that it isn't right. The flow patterns we have found are sharply different."

Zhao and his colleagues observed two years worth of data from HMI, which differs from one of the best previous helioseismology instruments – the Michelson Doppler Imager on board the joint European Space Agency/NASA mission the Solar and Heliospheric Observatory, or SOHO. SOHO observed the sun in low resolution on a regular basis, but only observed it in high resolution for a couple months each year. HMI observes the sun continuously with 16 times more detail than SOHO.

Using this data, Zhao compared the helioseismology results measured at four different heights within the sun's surface, and found these results were not consistent with what the normal convention would expect. The team proposed a way to make these four sets of measurements agree with each other.

This new method not only brought the four data sets into harmony, but also helped find the long-sought equatorward flow inside the sun. The team found that the flow toward the poles does indeed occur in a layer at near the sun's surface – but the equatorward flow isn't at the bottom. Instead, the material seeps back toward the equator through the middle of the convection layer. Moreover, deep down inside the layer is a second stream of material moving toward the poles, making what the scientists refer to as a double-cell system in which two oblong flow systems are stacked on top of each other.

"This has important consequences for modeling the solar dynamo," said Zhao. "We hope our results on the sun's interior flow will provide a new opportunity to study the generation of solar magnetism and solar cycles."

Zhao and his colleagues have provided their new map of the sun's interior to scientists who simulate the dynamo. The next steps will be to see how such new models jibe with the observations seen on the sun and how it may improve our ability to understand the constant dance of magnetism on the sun.

For more information about NASA's SDO, visit:
www.nasa.gov/sdo
Karen C. Fox
NASA's Goddard Space Flight Center, Greenbelt, Md.

Karen C. Fox | EurekAlert!
Further information:
http://www.nasa.gov
http://www.nasa.gov/content/goddard/sdo-mission-untangles-motion-inside-sun/#.Uh5iEXf3Mg8

More articles from Physics and Astronomy:

nachricht Tracing aromatic molecules in the early universe
23.03.2017 | University of California - Riverside

nachricht New study maps space dust in 3-D
23.03.2017 | DOE/Lawrence Berkeley National Laboratory

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>