Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Integration brings quantum computer a step closer

31.01.2014
An international research group led by the University of Bristol has made an important advance towards a quantum computer by shrinking down key components and integrating them onto a silicon microchip.

Scientists and engineers from an international collaboration led by Dr Mark Thompson from the University of Bristol have, for the first time, generated and manipulated single particles of light (photons) on a silicon chip – a major step forward in the race to build a quantum computer.

Quantum computers and quantum technologies in general are widely anticipated as the next major technology advancement, and are poised to replace conventional information and computing devices in applications ranging from ultra-secure communications and high-precision sensing to immensely powerful computers. While many of the components for a quantum computer already exist, for a quantum computer to be realised, these components need to be integrated onto a single chip.

Featuring today on the front cover of Nature Photonics, this latest advancement is one of the important pieces in the jigsaw needed in order to realise a quantum computer. While previous attempts have required external light sources to generate the photons, this new chip integrates components that can generate photons inside the chip. "We were surprised by how well the integrated sources performed together," admits Joshua Silverstone, lead author of the paper. "They produced high-quality identical photons in a reproducible way, confirming that we could one day manufacture a silicon chip with hundreds of similar sources on it, all working together. This could eventually lead to an optical quantum computer capable of perform enormously complex calculations."

"Single-photon detectors, sources and circuits have all been developed separately in silicon but putting them all together and integrating them on a chip is a huge challenge," explains group leader Mark Thompson. "Our device is the most functionally complex photonic quantum circuit to date, and was fabricated by Toshiba using exactly the same manufacturing techniques used to make conventional electronic devices."

The group, which, includes researchers from Toshiba Corporation (Japan), Stanford University (US), University of Glasgow (UK) and TU Delft (The Netherlands), now plans to integrate the remaining necessary components onto a chip, and show that large-scale quantum devices using photons are possible.

"Our group has been making steady progress towards a functioning quantum computer over the last five years," said Thompson. "We hope to have a photon-based device which can rival modern computing hardware for highly-specialised tasks within the next couple of years."

Much of the work towards this goal will be carried out at Bristol's new Centre for Doctoral Training in Quantum Engineering, which will train a new generation of engineers, scientists and entrepreneurs to harness the power of quantum mechanics using state-of-the-art engineering technique to make real world and useful quantum enhanced devices. This innovative centre bridges the gaps between physics, engineering, mathematics and computer science, working closely with chemists and biologists while interacting strongly with industry.

Notes to editors

A full copy of the research paper is available from Nature Photonics doi:10.1038/nphoton.2013.339, and a preprint version from arXiv:1304.1490

For high-resolutions pictures (examples below) and picture captions, please see: https://www.dropbox.com/sh/5y4wnu8eyc7f82l/lbHBvBvqRu

Issued by University of Bristol Press Office, Hannah Johnson, inxhj@bristol.ac.uk, 0117 331 8092, 07770 408 757

Hannah Johnson | EurekAlert!
Further information:
http://www.bristol.ac.uk

More articles from Physics and Astronomy:

nachricht Temperature-controlled fiber-optic light source with liquid core
20.06.2018 | Leibniz-Institut für Photonische Technologien e. V.

nachricht New material for splitting water
19.06.2018 | American Institute of Physics

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

What are the effects of coral reef marine protected areas?

21.06.2018 | Life Sciences

The Janus head of the South Asian monsoon

21.06.2018 | Earth Sciences

The world's tiniest first responders

21.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>