Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Integration brings quantum computer a step closer

31.01.2014
An international research group led by the University of Bristol has made an important advance towards a quantum computer by shrinking down key components and integrating them onto a silicon microchip.

Scientists and engineers from an international collaboration led by Dr Mark Thompson from the University of Bristol have, for the first time, generated and manipulated single particles of light (photons) on a silicon chip – a major step forward in the race to build a quantum computer.

Quantum computers and quantum technologies in general are widely anticipated as the next major technology advancement, and are poised to replace conventional information and computing devices in applications ranging from ultra-secure communications and high-precision sensing to immensely powerful computers. While many of the components for a quantum computer already exist, for a quantum computer to be realised, these components need to be integrated onto a single chip.

Featuring today on the front cover of Nature Photonics, this latest advancement is one of the important pieces in the jigsaw needed in order to realise a quantum computer. While previous attempts have required external light sources to generate the photons, this new chip integrates components that can generate photons inside the chip. "We were surprised by how well the integrated sources performed together," admits Joshua Silverstone, lead author of the paper. "They produced high-quality identical photons in a reproducible way, confirming that we could one day manufacture a silicon chip with hundreds of similar sources on it, all working together. This could eventually lead to an optical quantum computer capable of perform enormously complex calculations."

"Single-photon detectors, sources and circuits have all been developed separately in silicon but putting them all together and integrating them on a chip is a huge challenge," explains group leader Mark Thompson. "Our device is the most functionally complex photonic quantum circuit to date, and was fabricated by Toshiba using exactly the same manufacturing techniques used to make conventional electronic devices."

The group, which, includes researchers from Toshiba Corporation (Japan), Stanford University (US), University of Glasgow (UK) and TU Delft (The Netherlands), now plans to integrate the remaining necessary components onto a chip, and show that large-scale quantum devices using photons are possible.

"Our group has been making steady progress towards a functioning quantum computer over the last five years," said Thompson. "We hope to have a photon-based device which can rival modern computing hardware for highly-specialised tasks within the next couple of years."

Much of the work towards this goal will be carried out at Bristol's new Centre for Doctoral Training in Quantum Engineering, which will train a new generation of engineers, scientists and entrepreneurs to harness the power of quantum mechanics using state-of-the-art engineering technique to make real world and useful quantum enhanced devices. This innovative centre bridges the gaps between physics, engineering, mathematics and computer science, working closely with chemists and biologists while interacting strongly with industry.

Notes to editors

A full copy of the research paper is available from Nature Photonics doi:10.1038/nphoton.2013.339, and a preprint version from arXiv:1304.1490

For high-resolutions pictures (examples below) and picture captions, please see: https://www.dropbox.com/sh/5y4wnu8eyc7f82l/lbHBvBvqRu

Issued by University of Bristol Press Office, Hannah Johnson, inxhj@bristol.ac.uk, 0117 331 8092, 07770 408 757

Hannah Johnson | EurekAlert!
Further information:
http://www.bristol.ac.uk

More articles from Physics and Astronomy:

nachricht From rocks in Colorado, evidence of a 'chaotic solar system'
23.02.2017 | University of Wisconsin-Madison

nachricht Prediction: More gas-giants will be found orbiting Sun-like stars
22.02.2017 | Carnegie Institution for Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>