Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Integration brings quantum computer a step closer

31.01.2014
An international research group led by the University of Bristol has made an important advance towards a quantum computer by shrinking down key components and integrating them onto a silicon microchip.

Scientists and engineers from an international collaboration led by Dr Mark Thompson from the University of Bristol have, for the first time, generated and manipulated single particles of light (photons) on a silicon chip – a major step forward in the race to build a quantum computer.

Quantum computers and quantum technologies in general are widely anticipated as the next major technology advancement, and are poised to replace conventional information and computing devices in applications ranging from ultra-secure communications and high-precision sensing to immensely powerful computers. While many of the components for a quantum computer already exist, for a quantum computer to be realised, these components need to be integrated onto a single chip.

Featuring today on the front cover of Nature Photonics, this latest advancement is one of the important pieces in the jigsaw needed in order to realise a quantum computer. While previous attempts have required external light sources to generate the photons, this new chip integrates components that can generate photons inside the chip. "We were surprised by how well the integrated sources performed together," admits Joshua Silverstone, lead author of the paper. "They produced high-quality identical photons in a reproducible way, confirming that we could one day manufacture a silicon chip with hundreds of similar sources on it, all working together. This could eventually lead to an optical quantum computer capable of perform enormously complex calculations."

"Single-photon detectors, sources and circuits have all been developed separately in silicon but putting them all together and integrating them on a chip is a huge challenge," explains group leader Mark Thompson. "Our device is the most functionally complex photonic quantum circuit to date, and was fabricated by Toshiba using exactly the same manufacturing techniques used to make conventional electronic devices."

The group, which, includes researchers from Toshiba Corporation (Japan), Stanford University (US), University of Glasgow (UK) and TU Delft (The Netherlands), now plans to integrate the remaining necessary components onto a chip, and show that large-scale quantum devices using photons are possible.

"Our group has been making steady progress towards a functioning quantum computer over the last five years," said Thompson. "We hope to have a photon-based device which can rival modern computing hardware for highly-specialised tasks within the next couple of years."

Much of the work towards this goal will be carried out at Bristol's new Centre for Doctoral Training in Quantum Engineering, which will train a new generation of engineers, scientists and entrepreneurs to harness the power of quantum mechanics using state-of-the-art engineering technique to make real world and useful quantum enhanced devices. This innovative centre bridges the gaps between physics, engineering, mathematics and computer science, working closely with chemists and biologists while interacting strongly with industry.

Notes to editors

A full copy of the research paper is available from Nature Photonics doi:10.1038/nphoton.2013.339, and a preprint version from arXiv:1304.1490

For high-resolutions pictures (examples below) and picture captions, please see: https://www.dropbox.com/sh/5y4wnu8eyc7f82l/lbHBvBvqRu

Issued by University of Bristol Press Office, Hannah Johnson, inxhj@bristol.ac.uk, 0117 331 8092, 07770 408 757

Hannah Johnson | EurekAlert!
Further information:
http://www.bristol.ac.uk

More articles from Physics and Astronomy:

nachricht Tiniest Particles Shrink Before Exploding When Hit With SLAC's X-ray Laser
05.02.2016 | Tohoku University

nachricht Scientists create new state of matter: Quantum gas, liquid and crystal all-in-one
02.02.2016 | Universität Stuttgart

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: From allergens to anodes: Pollen derived battery electrodes

Pollens, the bane of allergy sufferers, could represent a boon for battery makers: Recent research has suggested their potential use as anodes in lithium-ion batteries.

"Our findings have demonstrated that renewable pollens could produce carbon architectures for anode applications in energy storage devices," said Vilas Pol, an...

Im Focus: Automated driving: Steering without limits

OmniSteer project to increase automobiles’ urban maneuverability begins with a € 3.4 million budget

Automobiles increase the mobility of their users. However, their maneuverability is pushed to the limit by cramped inner city conditions. Those who need to...

Im Focus: Microscopy: Nine at one blow

Advance in biomedical imaging: The University of Würzburg's Biocenter has enhanced fluorescence microscopy to label and visualise up to nine different cell structures simultaneously.

Fluorescence microscopy allows researchers to visualise biomolecules in cells. They label the molecules using fluorescent probes, excite them with light and...

Im Focus: NASA's ICESat-2 equipped with unique 3-D manufactured part

NASA's follow-on to the successful ICESat mission will employ a never-before-flown technique for determining the topography of ice sheets and the thickness of sea ice, but that won't be the only first for this mission.

Slated for launch in 2018, NASA's Ice, Cloud and land Elevation Satellite-2 (ICESat-2) also will carry a 3-D printed part made of polyetherketoneketone (PEKK),...

Im Focus: Sinking islands: Does the rise of sea level endanger the Takuu Atoll in the Pacific?

In the last decades, sea level has been rising continuously – about 3.3 mm per year. For reef islands such as the Maldives or the Marshall Islands a sinister picture is being painted evoking the demise of the island states and their cultures. Are the effects of sea-level rise already noticeable on reef islands? Scientists from the ZMT have now answered this question for the Takuu Atoll, a group of Pacific islands, located northeast of Papua New Guinea.

In the last decades, sea level has been rising continuously – about 3.3 mm per year. For reef islands such as the Maldives or the Marshall Islands a sinister...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AKL’16: Experience Laser Technology Live in Europe´s Largest Laser Application Center!

02.02.2016 | Event News

From intelligent knee braces to anti-theft backpacks

26.01.2016 | Event News

DATE 2016 Highlighting Automotive and Secure Systems

26.01.2016 | Event News

 
Latest News

Ocean acidification makes coralline algae less robust

08.02.2016 | Earth Sciences

Online shopping might not be as green as we thought

08.02.2016 | Studies and Analyses

Proteomics and precision medicine

08.02.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>