Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Hubble finds source of Magellanic Stream

Astronomers explore origin of gas ribbon wrapped around our galaxy

Astronomers using the NASA/ESA Hubble Space Telescope have solved the 40-year-old mystery of the origin of the Magellanic Stream, a long ribbon of gas stretching nearly halfway around the Milky Way. New Hubble observations reveal that most of this stream was stripped from the Small Magellanic Cloud some two billion years ago, with a smaller portion originating more recently from its larger neighbour.

Tracing the origin of the Magellanic Stream
Image credit: David L. Nidever, et al., NRAO/AUI/NSF and Mellinger, LAB Survey, Parkes Observatory, Westerbork Observatory, and Arecibo Observatory.

The Magellanic Clouds, two dwarf galaxies orbiting our galaxy, are at the head of a huge gaseous filament known as the Magellanic Stream. Since the Stream's discovery in the early 1970s, astronomers have wondered whether this gas comes from one or both of the satellite galaxies. Now, new Hubble observations show that most of the gas was stripped from the Small Magellanic Cloud about two billion years ago — but surprisingly, a second region of the stream was formed more recently from the Large Magellanic Cloud.

A team of astronomers determined the source of the gas filament by using Hubble's Cosmic Origins Spectrograph (COS), along with observations from ESO's Very Large Telescope, to measure the abundances [1] of heavy elements, such as oxygen and sulphur, at six locations along the Magellanic Stream. COS detected these elements from the way they absorb the ultraviolet light released by faraway quasars as it passes through the foreground Stream. Quasars are the brilliant cores of active galaxies.

The team found low abundances of oxygen and sulphur along most of the stream, matching the levels in the Small Magellanic Cloud about two billion years ago, when the gaseous ribbon was thought to have been formed.

In a surprising twist, the team discovered a much higher level of sulphur in a region closer to the Magellanic Clouds. "We're finding a consistent amount of heavy elements in the stream until we get very close to the Magellanic Clouds, and then the heavy element levels go up," says Andrew Fox, a staff member supported by ESA at the Space Telescope Science Institute, USA, and lead author of one of two new papers reporting these results. "This inner region is very similar in composition to the Large Magellanic Cloud, suggesting it was ripped out of that galaxy more recently."

This discovery was unexpected; computer models of the Stream predicted that the gas came entirely out of the Small Magellanic Cloud, which has a weaker gravitational pull than its more massive cousin.

"As Earth's atmosphere absorbs ultraviolet light, it's hard to measure the amounts of these elements accurately, as you need to look in the ultraviolet part of the spectrum to see them," says Philipp Richter of the University of Potsdam, Germany, and lead author on the second of the two papers. "So you have to go to space. Only Hubble is capable of taking measurements like these."

All of the Milky Way's nearby satellite galaxies have lost most of their gas content — except the Magellanic Clouds. As they are more massive than these other satellites they can cling on to this gas, using it to form new stars. However, these Clouds are approaching the Milky Way and its halo of hot gas. As they drift closer to us, the pressure of this hot halo pushes their gas out into space. This process, together with the gravitational tug-of-war between the two Magellanic Clouds, is thought to have formed the Magellanic Stream [2].

"Exploring the origin of such a large stream of gas so close to the Milky Way is important," adds Fox. "We now know which of our famous neighbours, the Magellanic Clouds, created this gas ribbon, which may eventually fall onto our own galaxy and spark new star formation. It's an important step forward in figuring out how galaxies obtain gas and form new stars."


[1] The "abundance" of an element is a measure of how common it is in its environment relative to other elements.

[2] The Magellanic Clouds can be used as a good testing ground for theories on how galaxies strip gas from one another and form new stars. This process seems episodic rather than smooth, without a continuous, slow stream of gas being stripped away from a small galaxy by a larger one. As both of the Magellanic Clouds are approaching our own galaxy, the Milky Way, they can be used to explore the dynamics of this process.

Notes for editors

The Hubble Space Telescope is a project of international cooperation between ESA and NASA.

These results are presented in a set of two papers, both published in the 1 August issue of The Astrophysical Journal.

The first of these papers is entitled "The COS/UVES absorption survey of the Magellanic Stream: I. One-tenth solar abundances along the body of the stream".

The international team of astronomers in this study consists of A. J. Fox (STScI, USA; ESA), P. Richter (University of Potsdam; Leibniz Institute for Astrophysics, Potsdam, Germany), B. P. Wakker (University of Wisconsin-Madison, USA), N. Lehner (University of Notre Dame, USA), J. C. Howk (University of Notre Dame, USA), N. B. Bekhti (University of Bonn, Germany), J. Bland-Hawthorn (University of Sydney, Australia), S. Lucas (University College London, UK).

The second of these papers is entitled "The COS/UVES absorption survey of the Magellanic Stream: II. Evidence for a complex enrichment history of the stream from the Fairall 9 sightline".

The international team of astronomers in this study consists of P. Richter (University of Potsdam; Leibniz Institute for Astrophysics, Potsdam, Germany), A. J. Fox (STScI, USA; ESA), B. P. Wakker (University of Wisconsin-Madison, USA), N. Lehner (University of Notre Dame, USA), J. C. Howk (University of Notre Dame, USA), J. Bland-Hawthorn (University of Sydney, Australia), N. B. Bekhti (University of Bonn, Germany), C. Fechner (University of Potsdam, Germany).

More information

Image credit: David L. Nidever, et al., NRAO/AUI/NSF and Mellinger, LAB Survey, Parkes Observatory, Westerbork Observatory, and Arecibo Observatory.


Philipp Richter
University of Potsdam
Postdam, Germany
Tel: +49-331-977-1841
Andrew Fox
Space Telescope Science Institute & ESA
Baltimore, USA
Tel: +1-410-338-5083
Nicky Guttridge
Garching bei München, Germany
Tel: +49-89-3200-6855

Nicky Guttridge | ESA/Hubble Information Centre
Further information:

More articles from Physics and Astronomy:

nachricht Move over, lasers: Scientists can now create holograms from neutrons, too
21.10.2016 | National Institute of Standards and Technology (NIST)

nachricht Finding the lightest superdeformed triaxial atomic nucleus
20.10.2016 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>