Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Failed explosions explain most peculiar supernovae

20.11.2012
Supercomputer simulations have revealed that a type of oddly dim, exploding star is probably a class of duds—one that could nonetheless throw new light on the mysterious nature of dark energy.

Most of the thousands of exploding stars classified as type Ia supernovae look similar, which is why astrophysicists use them as accurate cosmic distance indicators. They have shown that the expansion of the universe is accelerating under the influence of an unknown force now called dark energy; yet approximately 20 type Ia supernovae look peculiar.

"They're all a little bit odd," said George Jordan, a research scientist at the University of Chicago's Flash Center for Computational Science. Comparing odd type Ia supernovae to normal ones may permit astrophysicists to more precisely define the nature of dark energy, he noted.

Jordan and three colleagues, including his chief collaborator on the project, Hagai Perets, assistant professor of physics at Technion – Israel Institute of Technology, have found that the peculiar type Ia supernovae are probably white dwarf stars that failed to detonate. "They ignite an ordinary flame and they burn, but that isn't followed by a triggering of a detonation wave that goes through the star," Jordan said. These findings were based on simulations that consumed approximately two million central processing unit hours on Intrepid, the Blue Gene/P supercomputer at Argonne National Laboratory. Full details of the simulations will appear in the Astrophysical Journal Letters.

The triggering of a detonation wave is exactly what happens in normal type Ia supernovae, which incinerate white dwarfs, stars that have shrunk to Earth size after having burned most or all of their nuclear fuel. Most or all white dwarfs occur in binary systems, those that consist of two stars orbiting one another.

Faint, hard to detect

Peculiar type Ia supernovae are anywhere from 10 to 100 times fainter than normal ones, which are brighter and therefore more easily detected. Astrophysicists have estimated that they may account for approximately 15 percent of all type Ia supernovae.

The first in this class of exceptionally dim supernovae was discovered in 2002, noted Robert Fisher, assistant professor of physics at the University of Massachusetts Dartmouth, a co-author of the paper. Called SN 2002cx, it is considered the most peculiar type Ia supernova ever observed.

The dimmest of the lot, however, was discovered in 2008. "If the brightness of a standard supernova could be thought of as a single 60-watt light bulb, the brightness of this 2008 supernova would be equivalent to a small fraction of a single candle or a few dozen fireflies," Fisher noted.

Flash Center scientists have been successfully simulating type Ia supernova explosions following the gravitationally confined detonation scenario for years. In this scenario, the white dwarf begins to burn near its center. This ignition point burns outward, floating toward the surface like a bubble. After it breaks the surface, a cascade of hot ash flows around the star and collides with itself on the opposite end, triggering a detonation.

"We took the normal GCD scenario and asked what would happen if we pushed this to the limits and see what happens when it breaks," Jordan said. In the failed detonation scenario, the white dwarf experiences more ignition points that are closer to the core, which fuels more burning than in the detonation scenario.

"The extra burning causes the star to expand more, preventing it from achieving temperatures and pressures high enough to trigger detonation," noted co-author Daniel van Rossum of UChicago's Flash Center.

No incinerated star

Instead of detonating, the white dwarf remains intact, though some of the star's mass burns up and gets ejected from its surface. This failed detonation scenario looks quite similar to the peculiar type Ia explosions. The simulations resulted in phenomena that astronomers now can look for or have already found in their telescopic observations.

These phenomena include white dwarfs that display unusual compositions, asymmetric surface characteristics and a kick that sends the stars flying off at speeds of hundreds of miles per second. "This was a completely new discovery," Perets said. "No one had ever suggested that white dwarfs could be kicked at such velocities."

Normal type Ia supernovae display a relatively uniform appearance, but the asymmetric characteristics of their peculiar cousins means that the latter will often look much different from one another, depending on their viewing angle from Earth.

The asymmetric explosion also produces the kick, which is possibly powerful enough to release the white dwarf from the gravitational hold of any binary companion it may have had. This can produce a peculiar type of hyper-velocity white dwarf, the fastest of which might even escape the galaxy.

Smaller kicks might leave the binary system intact, but also push the white dwarf into a tight and highly elliptical orbit around its companion. Most white dwarfs orbiting close to their companions display a more circular orbit.

Typical white dwarfs have compositions of carbon and oxygen, yet some of the simulated ones that failed to detonate displayed heavy elements such as calcium, titanium and iron. When the detonation fails to happen, much of the ejected mass falls back onto the surface of the white dwarf, where the heavy elements become synthesized.

"I had never heard of such strange white dwarfs," Perets said. But when he conducted a literature search, he found reports of white dwarfs with properties that an irregular composition could explain. "It is quite rare that a new model brings about so many novel predictions, and potentially solves several distinct, seemingly unrelated puzzles."

Citation: "Failed-detonation supernovae: sub-luminous low-velocity IA supernovae and their kicked remnant white dwarfs with iron-rich cores," by George C. Jordan IV, Hagai B. Perets, Robert T. Fisher, and Daniel R. van Rossum," Astrophysical Journal Letters.

Funding: U.S. Department of Energy, National Science Foundation, Harvard-Smithsonian Center for Astrophysics and the Israel Science Foundation.

Steve Koppes | EurekAlert!
Further information:
http://www.uchicago.edu

More articles from Physics and Astronomy:

nachricht The Exception and its Rules
25.07.2016 | Technische Universität Wien

nachricht New record in materials research: 1 terapascals in a laboratory
22.07.2016 | Universität Bayreuth

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Newly discovered material property may lead to high temp superconductivity

Researchers at the U.S. Department of Energy's (DOE) Ames Laboratory have discovered an unusual property of purple bronze that may point to new ways to achieve high temperature superconductivity.

While studying purple bronze, a molybdenum oxide, researchers discovered an unconventional charge density wave on its surface.

Im Focus: Mapping electromagnetic waveforms

Munich Physicists have developed a novel electron microscope that can visualize electromagnetic fields oscillating at frequencies of billions of cycles per second.

Temporally varying electromagnetic fields are the driving force behind the whole of electronics. Their polarities can change at mind-bogglingly fast rates, and...

Im Focus: Continental tug-of-war - until the rope snaps

Breakup of continents with two speed: Continents initially stretch very slowly along the future splitting zone, but then move apart very quickly before the onset of rupture. The final speed can be up to 20 times faster than in the first, slow extension phase.phases

Present-day continents were shaped hundreds of millions of years ago as the supercontinent Pangaea broke apart. Derived from Pangaea’s main fragments Gondwana...

Im Focus: A Peek into the “Birthing Room” of Ribosomes

Scaffolding and specialised workers help with the delivery – Heidelberg biochemists gain new insights into biogenesis

A type of scaffolding on which specialised workers ply their trade helps in the manufacturing process of the two subunits from which the ribosome – the protein...

Im Focus: New protocol enables analysis of metabolic products from fixed tissues

Scientists at the Helmholtz Zentrum München have developed a new mass spectrometry imaging method which, for the first time, makes it possible to analyze hundreds of metabolites in fixed tissue samples. Their findings, published in the journal Nature Protocols, explain the new access to metabolic information, which will offer previously unexploited potential for tissue-based research and molecular diagnostics.

In biomedical research, working with tissue samples is indispensable because it permits insights into the biological reality of patients, for example, in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

GROWING IN CITIES - Interdisciplinary Perspectives on Urban Gardening

15.07.2016 | Event News

SIGGRAPH2016 Computer Graphics Interactive Techniques, 24-28 July, Anaheim, California

15.07.2016 | Event News

Partner countries of FAIR accelerator meet in Darmstadt and approve developments

11.07.2016 | Event News

 
Latest News

The Exception and its Rules

25.07.2016 | Physics and Astronomy

Using Ultrashort Pulsed Laser Radiation to Process Fibre-Reinforced Components

25.07.2016 | Materials Sciences

Added bacterial film makes new mortar resistant to water uptake

25.07.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>