Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Electronics advance moves closer to a world beyond silicon

05.09.2013
Researchers in the College of Engineering at Oregon State University have made a significant advance in the function of metal-insulator-metal, or MIM diodes, a technology premised on the assumption that the speed of electrons moving through silicon is simply too slow.

For the extraordinary speed envisioned in some future electronics applications, these innovative diodes solve problems that would not be possible with silicon-based materials as a limiting factor.

The new diodes consist of a “sandwich” of two metals, with two insulators in between, to form “MIIM” devices. This allows an electron not so much to move through materials as to tunnel through insulators and appear almost instantaneously on the other side. It’s a fundamentally different approach to electronics.

The newest findings, published in Applied Physics Letters, have shown that the addition of a second insulator can enable “step tunneling,” a situation in which an electron may tunnel through only one of the insulators instead of both. This in turn allows precise control of diode asymmetry, non-linearity, and rectification at lower voltages.

“This approach enables us to enhance device operation by creating an additional asymmetry in the tunnel barrier,” said John F. Conley, Jr., a professor in the OSU School of Electrical Engineering and Computer Science. “It gives us another way to engineer quantum mechanical tunneling and moves us closer to the real applications that should be possible with this technology.”

OSU scientists and engineers, who only three years ago announced the creation of the first successful, high-performance MIM diode, are international leaders in this developing field. Conventional electronics based on silicon materials are fast and inexpensive, but are reaching the top speeds possible using those materials. Alternatives are being sought.

More sophisticated microelectronic products could be possible with the MIIM diodes – not only improved liquid crystal displays, cell phones and TVs, but such things as extremely high-speed computers that don’t depend on transistors, or “energy harvesting” of infrared solar energy, a way to produce energy from the Earth as it cools during the night.

MIIM diodes could be produced on a huge scale at low cost, from inexpensive and environmentally benign materials. New companies, industries and high-tech jobs may ultimately emerge from advances in this field, OSU researchers say.

The work by Conley and OSU doctoral student Nasir Alimardani has been supported by the National Science Foundation, the U.S. Army Research Laboratory and the Oregon Nanoscience and Microtechnologies Institute.

About the OSU College of Engineering: The OSU College of Engineering is among the nation¹s largest and most productive engineering programs. Since 1999, the college has more than tripled its research expenditures to $37.2 million by emphasizing highly collaborative research that solves global problems, spins out new companies, and produces opportunity for students through hands-on learning.

MEDIA CONTACT:
David Stauth,
541-737-0787
SOURCE:
John Conley, 541-737-9874

John Conley | EurekAlert!
Further information:
http://www.oregonstate.edu

More articles from Physics and Astronomy:

nachricht APEX takes a glimpse into the heart of darkness
25.05.2018 | Max-Planck-Institut für Radioastronomie

nachricht First chip-scale broadband optical system that can sense molecules in the mid-IR
24.05.2018 | Columbia University School of Engineering and Applied Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>