Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Digital Quantum Simulator Realized

02.09.2011
The physicists of the University of Innsbruck and the Institute for Quantum Optics and Quantum Information (IQOQI) in Innsbruck have come considerably closer to their goal to investigate complex phenomena in a model system.

They have realized a digital, and therefore, universal quantum simulator in their laboratory, which can, in principle, simulate any physical system efficiently. Their work has been published in the online issue of the journal Science.


The mathematical description of the phenomenon to be investigated is programmed by using a series of laser pulses to perform a quantum calculation with atoms. Graphic: H. Ritsch

Almost two years ago Rainer Blatt’s and Christan Roos‘ research groups from the University of Innsbruck recreated the properties of a particle moving close to speed of light in a quantum system. They encoded the state of the particle into a highly cooled calcium atom and used lasers to manipulate it according to equations proposed by the famous quantum physicist Paul Dirac. Thereby, the scientists were able to simulate so called Zitterbewegung (quivering motion) of relativistic particles, which had never been observed directly in nature before. In the current work, the physicists use a digital approach instead of the previous analogue approach, and this universal digital quantum simulator can potentially be programmed to simulate any physical system efficiently. “We show in our experiment that our method works and that we can virtually recreate and investigate many systems,” explains Benjamin Lanyon from the Institute of Quantum Optics and Quantum Information (IQOQI) of the Austrian Academy of Sciences. “When we want to study another phenomenon, we only need to reprogram our simulator.”

The quantum computer at its best

The Innsbruck physicists use the building blocks of a quantum computer for the simulation. The mathematical description of the phenomenon to be investigated is programmed by using a series of laser pulses to perform a quantum calculation with atoms. Laser-cooled and electrically trapped calcium atoms are used as carriers of quantum bits (qubits). “We encode the desired initial state of the system to be investigated in these qubits and implement the operation sets by laser pulses,“ explains Christian Roos. He and his colleagues have demonstrated this method in two experiments at the IQOQI and the University of Innsbruck using up to 100 gates and 6 qubits. “One of the new scientific results is that interactions and dynamics can be simulated that are not even present in the quantum computer,“ says the enthused Benjamin Lanyon. He is convinced that this will be one of the most promising applications of a future quantum computer. “However, we still need a considerably higher number of quantum bits. This means that we need to be able to control and manipulate considerably more atoms – up to 40 – in the same exact way as we did in our experiment,“ says Lanyon.

First confirmation of approach

Physical phenomena are often described by equations, which may be too complicated to solve. In this case, researchers use computer simulations as a model to investigate open questions. Because this strategy is not feasible even for relatively small quantum systems due to the lack of the processing power of classical computers, the American physicist Richard Feynman proposed to simulate these phenomena in quantum systems experimentally. In 1996 the theorist Seth Lloyd confirmed the feasibility of this approach: Quantum computers can be programmed to efficiently simulate any physical system. A precondition for this approach is to have complete control over the technology and set-up of the simulator. This has already been achieved by Rainer Blatt’s successful research group working on quantum computers over the last few years. Based on this groundwork, the physicists have now been the first to experimentally realize a quantum simulator.

The scientific work published in Science has been supported by the Austrian Science Fund, the European Commission and the Federation of Austrian Industries Tyrol.

Publication: Universal digital quantum simulation with trapped ions. BP Lanyon, C Hempel, D Nigg, M Müller, R Gerritsma, F Zähringer, P Schindler, JT Barreiro, M Rambach, G Kirchmair, M Hennrich, P Zoller, R Blatt, CF Roos. Science Express 1 September 2011. DOI: 10.1126/science.1208001

Contact:
Christian Roos and Ben Lanyon
Institute for Quantum Optics and Quantum Information
Austrian Academy of Sciences
Phone: +43 512 507-4728
Email: christian.roos@uibk.ac.at / ben.lanyon@uibk.ac.at
Christian Flatz
Public Relations
University of Innsbruck
Phone: +43 512 507-32022
Cell: +43 676 8725 32022
Email: christian.flatz@uibk.ac.at

Dr. Christian Flatz | Universität Innsbruck
Further information:
http://www.quantumoptics.at/
http://www.uibk.ac.at/

More articles from Physics and Astronomy:

nachricht First Juno science results supported by University of Leicester's Jupiter 'forecast'
26.05.2017 | University of Leicester

nachricht Measured for the first time: Direction of light waves changed by quantum effect
24.05.2017 | Vienna University of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>