Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Digital Quantum Simulator Realized

02.09.2011
The physicists of the University of Innsbruck and the Institute for Quantum Optics and Quantum Information (IQOQI) in Innsbruck have come considerably closer to their goal to investigate complex phenomena in a model system.

They have realized a digital, and therefore, universal quantum simulator in their laboratory, which can, in principle, simulate any physical system efficiently. Their work has been published in the online issue of the journal Science.


The mathematical description of the phenomenon to be investigated is programmed by using a series of laser pulses to perform a quantum calculation with atoms. Graphic: H. Ritsch

Almost two years ago Rainer Blatt’s and Christan Roos‘ research groups from the University of Innsbruck recreated the properties of a particle moving close to speed of light in a quantum system. They encoded the state of the particle into a highly cooled calcium atom and used lasers to manipulate it according to equations proposed by the famous quantum physicist Paul Dirac. Thereby, the scientists were able to simulate so called Zitterbewegung (quivering motion) of relativistic particles, which had never been observed directly in nature before. In the current work, the physicists use a digital approach instead of the previous analogue approach, and this universal digital quantum simulator can potentially be programmed to simulate any physical system efficiently. “We show in our experiment that our method works and that we can virtually recreate and investigate many systems,” explains Benjamin Lanyon from the Institute of Quantum Optics and Quantum Information (IQOQI) of the Austrian Academy of Sciences. “When we want to study another phenomenon, we only need to reprogram our simulator.”

The quantum computer at its best

The Innsbruck physicists use the building blocks of a quantum computer for the simulation. The mathematical description of the phenomenon to be investigated is programmed by using a series of laser pulses to perform a quantum calculation with atoms. Laser-cooled and electrically trapped calcium atoms are used as carriers of quantum bits (qubits). “We encode the desired initial state of the system to be investigated in these qubits and implement the operation sets by laser pulses,“ explains Christian Roos. He and his colleagues have demonstrated this method in two experiments at the IQOQI and the University of Innsbruck using up to 100 gates and 6 qubits. “One of the new scientific results is that interactions and dynamics can be simulated that are not even present in the quantum computer,“ says the enthused Benjamin Lanyon. He is convinced that this will be one of the most promising applications of a future quantum computer. “However, we still need a considerably higher number of quantum bits. This means that we need to be able to control and manipulate considerably more atoms – up to 40 – in the same exact way as we did in our experiment,“ says Lanyon.

First confirmation of approach

Physical phenomena are often described by equations, which may be too complicated to solve. In this case, researchers use computer simulations as a model to investigate open questions. Because this strategy is not feasible even for relatively small quantum systems due to the lack of the processing power of classical computers, the American physicist Richard Feynman proposed to simulate these phenomena in quantum systems experimentally. In 1996 the theorist Seth Lloyd confirmed the feasibility of this approach: Quantum computers can be programmed to efficiently simulate any physical system. A precondition for this approach is to have complete control over the technology and set-up of the simulator. This has already been achieved by Rainer Blatt’s successful research group working on quantum computers over the last few years. Based on this groundwork, the physicists have now been the first to experimentally realize a quantum simulator.

The scientific work published in Science has been supported by the Austrian Science Fund, the European Commission and the Federation of Austrian Industries Tyrol.

Publication: Universal digital quantum simulation with trapped ions. BP Lanyon, C Hempel, D Nigg, M Müller, R Gerritsma, F Zähringer, P Schindler, JT Barreiro, M Rambach, G Kirchmair, M Hennrich, P Zoller, R Blatt, CF Roos. Science Express 1 September 2011. DOI: 10.1126/science.1208001

Contact:
Christian Roos and Ben Lanyon
Institute for Quantum Optics and Quantum Information
Austrian Academy of Sciences
Phone: +43 512 507-4728
Email: christian.roos@uibk.ac.at / ben.lanyon@uibk.ac.at
Christian Flatz
Public Relations
University of Innsbruck
Phone: +43 512 507-32022
Cell: +43 676 8725 32022
Email: christian.flatz@uibk.ac.at

Dr. Christian Flatz | Universität Innsbruck
Further information:
http://www.quantumoptics.at/
http://www.uibk.ac.at/

More articles from Physics and Astronomy:

nachricht Meteoritic stardust unlocks timing of supernova dust formation
19.01.2018 | Carnegie Institution for Science

nachricht Artificial agent designs quantum experiments
19.01.2018 | Universität Innsbruck

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>