Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Diamond 'super-earth' may not be quite as precious, UA graduate student finds

09.10.2013
An alien world reported to be the first known planet to consist largely of diamond appears less likely to be of such precious nature, according to a new analysis led by UA graduate student Johanna Teske

A planet 40 light years from our solar system, believed to be the first-ever discovered planet to consist largely of diamond, may in fact be of less exquisite nature, according to new research led by University of Arizona astronomy graduate student Johanna Teske.


In the sky with diamonds? A so-called super-earth, planet 55 Cancri e was believed to be the first known planet to consist largely of diamond, due in part to the high carbon-to-oxygen ratio of its host star.

Credit: Haven Giguere/Yale University/NASA

Revisiting public data from previous telescope observations, Teske's team analyzed the available data in more detail and concluded that carbon – the chemical element diamonds are made of – appears to be less abundant in relation to oxygen in the planet's host star – and by extension, perhaps the planet – than was suggested by a study of the host star published in 2010.

"The 2010 paper found that '55 Cancri,' a star that hosts five planets, has a carbon-to-oxygen ratio greater than one," Teske said. "This observation helped motivate a paper last year about the innermost planet of the system, the 'super-Earth' 55 Cancri e. Using observations of the planet's mass and radius to create models of its interior that assumed the same carbon-to-oxygen ratio of the star, the 2012 paper suggested the planet contains more carbon than oxygen."

"However, our analysis makes this seem less likely because the host star doesn't appear as carbon-rich as previously thought," Teske said.

Observations obtained in 2010, together with simulations astronomers use to model a planet's interior based on data like radius, mass and orbital velocity, had yielded a carbon to oxygen ratio greater than one, in other words, an alien world based on carbon instead of oxygen as most planets are in our solar system, including Earth.

"The sun only has about half as much carbon as oxygen, so a star or a planet with a higher ratio between the two elements, particularly a planet with more carbon than oxygen, is interesting and different from what we have in our solar system," explained Teske, who is graduating this spring with a doctorate from the UA's Department of Astronomy and Steward Observatory.

Based on the previous results, it was suggested that the "diamond planet" is a rocky world with a surface of graphite surrounding a thick layer of diamond instead of water and granite like Earth.

The new research by Teske and collaborators, to be published in the Astrophysical Journal and available online, calls this conclusion in question, making it less likely a hypothetical space probe sent to sample the planet's innards would dig up anything sparkling.

Teske's group found that the planet's host star contains almost 25 percent more oxygen than carbon, about mid way between the Sun and what the previous study suggested.

"In theory, 55 Cancri e could still have a high carbon to oxygen ratio and be a diamond planet, but the host star does not have such a high ratio," Teske said. "So in terms of the two building blocks of information used for the initial 'diamond-planet' proposal – the measurements of the exoplanet and the measurements of the star – the measurements of the star no longer verify that."

A so-called super-Earth boasting about twice the Earth's diameter and eight times Earth's mass, the "diamond planet," whose official designation is 55 Cancri e, is the smallest member of a five-planet system located in the constellation Cancer. 55 Cancri e races around its host star at such close distance that one year lasts only 18 hours and its surface temperature is more than 3,000 degrees Fahrenheit.

"With rocky worlds like 55 Cancri e, researchers use measurements of a planet's radius, mass and density and basic physical equations governing the internal structure of solid planets to calculate possible compositions of the planet's interior," Teske said.

"This planet is probably rocky or has a large rocky component," she said. "We don't really know if it has an atmosphere."

Since astronomers can't probe the makeups of stars and planets directly, they rely on indirect observational methods such as absorption spectra; each chemical element absorbs light at different wavelengths, in a characteristic pattern that can be used as a fingerprint of that element. By analyzing the absorption spectra of starlight passing through a star's atmosphere, it is possible to deduce what elements are present in the star's atmosphere.

"Instead of using the same absorption lines in the spectrum of the host star as the previous study of 55 Cancri, we looked at more lines of carbon and more lines of oxygen," Teske said. "We find that because this particular host star is cooler than our sun and more metal-rich, the single oxygen line analyzed in the previous study to determine the star's oxygen abundance is more prone to error."

Teske instead relied on several different indicators of the oxygen abundance that were not considered previously. "Averaging all of these measurements together gives us a more complete picture of the oxygen abundance in the star."

Teske pointed out that the 'diamond planet' results hinge on the presumption that a star's composition bears some relation to the composition of its planets, a notion grounded in the idea that planets form from the same material as their host stars. However, as astronomers discover more and more extrasolar systems, a one-size-fits-all formula becomes less likely.

"We still don't know whether our solar system is common or uncommon in the universe," Teske said, "because many of the systems that we are finding have giant gas planets closer to the star, unlike our system where rocky planets dominate the inner orbits and gas giants occur further out."

Given there are so many processes – most of which are not fully understood – happening in a planet-forming disk that could influence the composition of planets, Teske said: "At this point, I would honestly be surprised if there was a one-to-one correlation."

"The compositions of planets and stars don't always match," she said, explaining that in a swirling disk of dust and gas giving birth to a star and planets, "you can have pockets where there is a lot of water, meaning an enhancement of oxygen. Or places where water has frozen out, leaving behind carbon species as the dominant gas molecules. So the planets that are accreting gas at those locations in the disk could be more carbon-rich instead of oxygen-rich."

Therefore, room for uncertainty remains, according to the researchers.

"Depending on where 55 Cancri e formed in the protoplanetary disk, its carbon-to-oxygen ratio could differ from that of the host star," Teske said. "It could be higher or lower. But based on what we know at this point, 55 Cancri e is more of a 'diamond in the rough.'"

The study was co-authored by Katia Cunha of Steward Observatory and Observatorio Nacional in Rio de Janeiro, Brazil; Simon Schuler of the University of Tampa, Fla.; Caitlin Griffith of the UA Lunar and Planetary Laboratory; and Verne Smith of the National Optical Astronomy Observatory in Tucson. Teske and Griffith were supported by NASA's Planetary Atmospheres Program.

The research paper is published at http://arxiv.org/abs/1309.6032

The previous studies mentioned in this article are available here:
2010 study by Delgado Mena et al.:
http://m.iopscience.iop.org/0004-637X/725/2/2349?rel=sem&relno=3
2012 study by Madhusudhan, Lee and Mousis:
http://inspirehep.net/record/1190108?ln=en

Daniel Stolte | University of Arizona
Further information:
http://www.arizona.edu

More articles from Physics and Astronomy:

nachricht Studying fundamental particles in materials
17.01.2017 | Max-Planck-Institut für Struktur und Dynamik der Materie

nachricht Seeing the quantum future... literally
16.01.2017 | University of Sydney

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>