Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cooling massive objects to the quantum ground state

02.04.2015

Cooling of macroscopic and mesoscopic objects to the quantum ground states are of great interests not only for fundamental study of quantum theory but also for the broad applications in quantum information processing and high-precision metrology.

However, the cooling limit is subjected to the quantum backaction, and ground state cooling is possible only in the resolved sideband limit, which requires the resonance frequency of the mechanical motion to be larger than the cavity decay rate.


This image shows an optomechanical system with two mechanical modes coupled to the same optical mode.

Credit: ©Science China Press

This sets a major obstacle for the ground state preparation and quantum manipulation of macroscopic and mesoscopic mechanical resonators, since more massive resonators typically have lower mechanical resonance frequencies. Therefore, it is essential to overcome this limitation, so that ground state cooling can be achieved for massive objects.

Very recently, Professor Yun-Feng Xiao and Ph.D student Yong-Chun Liu at Peking University, collaborated with Columbia University, have proposed an unresolved sideband ground-state cooling scheme in a generic optomechanical system, by taking advantage of the destructive quantum interference in a cavity optomechanical system with two mechanical modes coupled to the same optical cavity mode (Figure 1), where optomechanically-induced transparency phenomenon occurs.

They find that using the multiple inputs, the cascaded cooling effect further suppresses the quantum backaction heating. They show that ground state cooling of the mechanical mode beyond the resolved sideband limit by nearly three orders of magnitude can be achieved.

"This cooling approach adds little complexity to the existing optomechanical system, which is crucial in the experimental point of view." said Yong-Chun Liu, the first author of the paper. Compared with the conventional backaction cooling approach, the additional requirement here is a control mechanical mode and one (or more) input laser.

It is experimentally feasible for various optomechanical systems within current technical conditions. On one hand, many optomechanical systems possess abundant mechanical modes with different resonance frequencies, since the oscillation have different types and orders.

This situation can be found in optomechanical systems using whispering-gallery microcavities, photonic crystal cavities, membranes, nanostrings and nanorods amongst others. On the other hand, composite optomechanical systems, containing two independent mechanical resonators, are also conceivable. For example, in Fabry-Perot cavities, the motion of one mirror acts as a control mechanical mode while the other mirror is to be cooled (Figure 1).

"This study paves the way for the manipulation of macroscopic mechanical resonators in the quantum regime." said Yun-Feng Xiao.

###

This research was funded by the National Basic Research Program of China (Grant Nos. 2013CB328704 and 2013CB921904), the National Natural Science Foundation of China (Grant Nos. 11474011, 11222440 and 61435001), the Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20120001110068) and the Optical Radiation Cooling and Heating in Integrated Devices Program of Defense Advanced Research Projects Agency (Grant No. C11L10831).

See the article:

Yong-Chun Liu, Yun-Feng Xiao, Xingsheng Luan, and Chee Wei Wong, Optomechanically-induced-transparency cooling of massive mechanical resonators to the quantum ground state. Sci China-Phys Mech Astron, 2015, 58: 050305, doi: 10.1007/s11433-014-5635-6

http://phys.scichina.com:8083/sciGe/EN/abstract/abstract509634.shtml

Yong-Chun Liu | EurekAlert!

Further reports about: Cooling Radiation cooling effect frequencies mechanical mirror objects photonic crystal

More articles from Physics and Astronomy:

nachricht Columbia engineers create artificial graphene in a nanofabricated semiconductor structure
13.12.2017 | Columbia University School of Engineering and Applied Science

nachricht Long-lived storage of a photonic qubit for worldwide teleportation
12.12.2017 | Max-Planck-Institut für Quantenoptik

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Gecko adhesion technology moves closer to industrial uses

13.12.2017 | Information Technology

Columbia engineers create artificial graphene in a nanofabricated semiconductor structure

13.12.2017 | Physics and Astronomy

Research reveals how diabetes in pregnancy affects baby's heart

13.12.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>