Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cooling massive objects to the quantum ground state

02.04.2015

Cooling of macroscopic and mesoscopic objects to the quantum ground states are of great interests not only for fundamental study of quantum theory but also for the broad applications in quantum information processing and high-precision metrology.

However, the cooling limit is subjected to the quantum backaction, and ground state cooling is possible only in the resolved sideband limit, which requires the resonance frequency of the mechanical motion to be larger than the cavity decay rate.


This image shows an optomechanical system with two mechanical modes coupled to the same optical mode.

Credit: ©Science China Press

This sets a major obstacle for the ground state preparation and quantum manipulation of macroscopic and mesoscopic mechanical resonators, since more massive resonators typically have lower mechanical resonance frequencies. Therefore, it is essential to overcome this limitation, so that ground state cooling can be achieved for massive objects.

Very recently, Professor Yun-Feng Xiao and Ph.D student Yong-Chun Liu at Peking University, collaborated with Columbia University, have proposed an unresolved sideband ground-state cooling scheme in a generic optomechanical system, by taking advantage of the destructive quantum interference in a cavity optomechanical system with two mechanical modes coupled to the same optical cavity mode (Figure 1), where optomechanically-induced transparency phenomenon occurs.

They find that using the multiple inputs, the cascaded cooling effect further suppresses the quantum backaction heating. They show that ground state cooling of the mechanical mode beyond the resolved sideband limit by nearly three orders of magnitude can be achieved.

"This cooling approach adds little complexity to the existing optomechanical system, which is crucial in the experimental point of view." said Yong-Chun Liu, the first author of the paper. Compared with the conventional backaction cooling approach, the additional requirement here is a control mechanical mode and one (or more) input laser.

It is experimentally feasible for various optomechanical systems within current technical conditions. On one hand, many optomechanical systems possess abundant mechanical modes with different resonance frequencies, since the oscillation have different types and orders.

This situation can be found in optomechanical systems using whispering-gallery microcavities, photonic crystal cavities, membranes, nanostrings and nanorods amongst others. On the other hand, composite optomechanical systems, containing two independent mechanical resonators, are also conceivable. For example, in Fabry-Perot cavities, the motion of one mirror acts as a control mechanical mode while the other mirror is to be cooled (Figure 1).

"This study paves the way for the manipulation of macroscopic mechanical resonators in the quantum regime." said Yun-Feng Xiao.

###

This research was funded by the National Basic Research Program of China (Grant Nos. 2013CB328704 and 2013CB921904), the National Natural Science Foundation of China (Grant Nos. 11474011, 11222440 and 61435001), the Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20120001110068) and the Optical Radiation Cooling and Heating in Integrated Devices Program of Defense Advanced Research Projects Agency (Grant No. C11L10831).

See the article:

Yong-Chun Liu, Yun-Feng Xiao, Xingsheng Luan, and Chee Wei Wong, Optomechanically-induced-transparency cooling of massive mechanical resonators to the quantum ground state. Sci China-Phys Mech Astron, 2015, 58: 050305, doi: 10.1007/s11433-014-5635-6

http://phys.scichina.com:8083/sciGe/EN/abstract/abstract509634.shtml

Yong-Chun Liu | EurekAlert!

Further reports about: Cooling Radiation cooling effect frequencies mechanical mirror objects photonic crystal

More articles from Physics and Astronomy:

nachricht Engineering team images tiny quasicrystals as they form
18.08.2017 | Cornell University

nachricht Astrophysicists explain the mysterious behavior of cosmic rays
18.08.2017 | Moscow Institute of Physics and Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>