Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cooling massive objects to the quantum ground state

02.04.2015

Cooling of macroscopic and mesoscopic objects to the quantum ground states are of great interests not only for fundamental study of quantum theory but also for the broad applications in quantum information processing and high-precision metrology.

However, the cooling limit is subjected to the quantum backaction, and ground state cooling is possible only in the resolved sideband limit, which requires the resonance frequency of the mechanical motion to be larger than the cavity decay rate.


This image shows an optomechanical system with two mechanical modes coupled to the same optical mode.

Credit: ©Science China Press

This sets a major obstacle for the ground state preparation and quantum manipulation of macroscopic and mesoscopic mechanical resonators, since more massive resonators typically have lower mechanical resonance frequencies. Therefore, it is essential to overcome this limitation, so that ground state cooling can be achieved for massive objects.

Very recently, Professor Yun-Feng Xiao and Ph.D student Yong-Chun Liu at Peking University, collaborated with Columbia University, have proposed an unresolved sideband ground-state cooling scheme in a generic optomechanical system, by taking advantage of the destructive quantum interference in a cavity optomechanical system with two mechanical modes coupled to the same optical cavity mode (Figure 1), where optomechanically-induced transparency phenomenon occurs.

They find that using the multiple inputs, the cascaded cooling effect further suppresses the quantum backaction heating. They show that ground state cooling of the mechanical mode beyond the resolved sideband limit by nearly three orders of magnitude can be achieved.

"This cooling approach adds little complexity to the existing optomechanical system, which is crucial in the experimental point of view." said Yong-Chun Liu, the first author of the paper. Compared with the conventional backaction cooling approach, the additional requirement here is a control mechanical mode and one (or more) input laser.

It is experimentally feasible for various optomechanical systems within current technical conditions. On one hand, many optomechanical systems possess abundant mechanical modes with different resonance frequencies, since the oscillation have different types and orders.

This situation can be found in optomechanical systems using whispering-gallery microcavities, photonic crystal cavities, membranes, nanostrings and nanorods amongst others. On the other hand, composite optomechanical systems, containing two independent mechanical resonators, are also conceivable. For example, in Fabry-Perot cavities, the motion of one mirror acts as a control mechanical mode while the other mirror is to be cooled (Figure 1).

"This study paves the way for the manipulation of macroscopic mechanical resonators in the quantum regime." said Yun-Feng Xiao.

###

This research was funded by the National Basic Research Program of China (Grant Nos. 2013CB328704 and 2013CB921904), the National Natural Science Foundation of China (Grant Nos. 11474011, 11222440 and 61435001), the Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20120001110068) and the Optical Radiation Cooling and Heating in Integrated Devices Program of Defense Advanced Research Projects Agency (Grant No. C11L10831).

See the article:

Yong-Chun Liu, Yun-Feng Xiao, Xingsheng Luan, and Chee Wei Wong, Optomechanically-induced-transparency cooling of massive mechanical resonators to the quantum ground state. Sci China-Phys Mech Astron, 2015, 58: 050305, doi: 10.1007/s11433-014-5635-6

http://phys.scichina.com:8083/sciGe/EN/abstract/abstract509634.shtml

Yong-Chun Liu | EurekAlert!

Further reports about: Cooling Radiation cooling effect frequencies mechanical mirror objects photonic crystal

More articles from Physics and Astronomy:

nachricht Prediction: More gas-giants will be found orbiting Sun-like stars
22.02.2017 | Carnegie Institution for Science

nachricht NASA's fermi finds possible dark matter ties in andromeda galaxy
22.02.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>