Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Connecting the (quantum) dots

27.02.2013
New spin technique moves researchers at the University of Pittsburgh and Delft University of Technology closer to creating the first viable high-speed quantum computer

Recent research offers a new spin on using nanoscale semiconductor structures to build faster computers and electronics. Literally.

University of Pittsburgh and Delft University of Technology researchers reveal in the Feb. 17 online issue of Nature Nanotechnology a new method that better preserves the units necessary to power lightning-fast electronics, known as qubits (pronounced CUE-bits). Hole spins, rather than electron spins, can keep quantum bits in the same physical state up to 10 times longer than before, the report finds.

"Previously, our group and others have used electron spins, but the problem was that they interacted with spins of nuclei, and therefore it was difficult to preserve the alignment and control of electron spins," said Sergey Frolov, assistant professor in the Department of Physics and Astronomy within Pitt's Kenneth P. Dietrich School of Arts and Sciences, who did the work as a postdoctoral fellow at Delft University of Technology in the Netherlands.

Whereas normal computing bits hold mathematical values of zero or one, quantum bits live in a hazy superposition of both states. It is this quality, said Frolov, which allows them to perform multiple calculations at once, offering exponential speed over classical computers. However, maintaining the qubit's state long enough to perform computation remains a long-standing challenge for physicists.

"To create a viable quantum computer, the demonstration of long-lived quantum bits, or qubits, is necessary," said Frolov. "With our work, we have gotten one step closer."

The holes within hole spins, Frolov explained, are literally empty spaces left when electrons are taken out. Using extremely thin filaments called InSb (indium antimonide) nanowires, the researchers created a transistor-like device that could transform the electrons into holes. They then precisely placed one hole in a nanoscale box called "a quantum dot" and controlled the spin of that hole using electric fields. This approach— featuring nanoscale size and a higher density of devices on an electronic chip—is far more advantageous than magnetic control, which has been typically employed until now, said Frolov.

"Our research shows that holes, or empty spaces, can make better spin qubits than electrons for future quantum computers."

"Spins are the smallest magnets in our universe. Our vision for a quantum computer is to connect thousands of spins, and now we know how to control a single spin," said Frolov. "In the future, we'd like to scale up this concept to include multiple qubits."

Coauthors of the paper include Leo Kouwenhoven, Stevan Nadj-Perge, Vlad Pribiag, Johan van den Berg, and Ilse van Weperen of Delft University of Technology; and Sebastien Plissard and Erik Bakkers from Eindhoven University of Technology in the Netherlands.

The paper, "Electrical control over single hole spins in nanowire quantum dots," appeared online Feb. 17 in Nature Nanotechnology. The research was supported by the Dutch Organization for Fundamental Research on Matter, the Netherlands Organization for Scientific Research, and the European Research Council.

Frolov and his Netherlands colleagues were recent winners of the 2012 Newcomb Cleveland Prize, an annual honor awarded to the author/s of the best research article/report appearing in Science, which is published weekly by the American Association for the Advancement of Science (AAAS). Read more about the award here: http://news.aaas.org/2012_annual_meeting/0215research-probing-a-quantum-phase-transition-wins-the-2011-aaas-newcomb-cleveland-prize-supported-by-affymetrix.shtml

2/26/13/mab/cjhm

B. Rose Huber | EurekAlert!
Further information:
http://www.pitt.edu

More articles from Physics and Astronomy:

nachricht From rocks in Colorado, evidence of a 'chaotic solar system'
23.02.2017 | University of Wisconsin-Madison

nachricht Prediction: More gas-giants will be found orbiting Sun-like stars
22.02.2017 | Carnegie Institution for Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>