Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Coastlines could be protected by Invisibility Cloak

02.10.2008
Scientists at the University of Liverpool have tested an ‘invisibility cloak’ that could reduce the risk of large water waves overtopping coastal defences.

Mathematicians at Liverpool, working with physicists at the Centre National de la Recherche Scientifique (CNRS) and Aix-Marseille Universite have found that coastal defences could be made ‘invisible' when water is guided through a special structure called metamaterial.

Metamaterial was first invented by Sir John Pendry at Imperial College London where scientists discovered that this unique structure could bend electromagnetic radiation – such as visible light, radar or microwaves – around a spherical space, making an object within this region appear invisible.

The new structure is cylindrical and consists of rigid pillars that help guide water along concentric corridors. The pillars interact with the water, guiding it in different directions along the corridors and increasing its speed as it nears the centre of the structure - similar to a whirlpool. The water waves, however, are never broken-up and exit the structure as though they had never been disturbed.

Dr Sebastien Guenneau, from the University’s Department of Mathematical Science, explains: “Defending land against flooding and tidal waves is a big issue for scientists and engineers all over the world. Coastal defences have to withstand great forces and there is always a risk of water overtopping or penetrating these structures. Water crashes against these defences, breaking the wave and causing a lot of damage to roads and property hidden behind them.

“What is unique about this new structure is that it interacts with the water, guiding it to a particular destination rather than breaking it up and sending it everywhere. It is as though the defences are invisible to the wave and as such it does not recognise the structure as an obstacle. This makes it easier to manipulate water waves.

“We now need to investigate how to replicate this effect in a ‘real’ life situation to protect land from natural disasters such as tsunamis, and defend other structures such as oil rigs in the ocean.”

The research is published in Physical Review Letters.

Samantha Martin | alfa
Further information:
http://www.liv.ac.uk/newsroom

More articles from Physics and Astronomy:

nachricht Molecule flash mob
19.01.2017 | Technische Universität Wien

nachricht Magnetic moment of a single antiproton determined with greatest precision ever
19.01.2017 | Johannes Gutenberg-Universität Mainz

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>