Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Astronomers find clues to decades-long coronal heating mystery

16.10.2013
Drs. Michael Hahn and Daniel Wolf Savin, research scientists at Columbia University's Astrophysics Laboratory in New York, NY, found evidence that magnetic waves in a polar coronal hole contain enough energy to heat the corona and moreover that they also deposit most of their energy at sufficiently low heights for the heat to spread throughout the corona.

The observations help to answer a 70-year-old solar physics conundrum about the unexplained extreme temperature of the Sun's corona – known as the coronal heating problem.

Hahn and Savin analyzed data from the Extreme Ultraviolet Imaging Spectrometer onboard the Japanese satellite Hinode. They used observations of a polar coronal hole, a region of the Sun where the magnetic fields lines stretch from the solar surface far into interplanetary space. The findings were published on September 30th in the October 20th edition of The Astrophysical Journal.

To understand the coronal heating problem, imagine a flame coming out of an ice cube. A similar effect occurs on the surface of the Sun. Nuclear fusion in the center of the Sun heats the solar core to 15 million degrees. Moving away from this furnace, by the time one arrives at the surface of the Sun the gas has cooled to a relatively refreshing 6000 degrees. But the temperature of the gas in the corona, above the solar surface, soars back up to over one million degrees. What causes this unexpected temperature increase has puzzled scientists since 1939.

Two dominant theories exist to explain this mystery. One attributes the heating to the loops of magnetic field which stretch across the solar surface and can snap and release energy. Another ascribes the heating to waves emanating from below the solar surface, which carry magnetic energy and deposit it in the corona. Observations show both of these processes continually occur on the Sun. But until now scientists have been unable to determine if either one of these mechanisms releases sufficient energy to heat the corona to such high temperatures.

Hahn and Savin's recent observations show that magnetic waves are the answer. The advance opens up a realm of further questions; chief among them is what causes the waves to damp. Hahn and Savin are planning new observations to try to address this issue.

This research has been supported by the National Science Foundation Division of Atmospheric and Geospace Sciences through the Solar, Heliospheric and Interplanetary Environment program.

Scientific contacts:

Michael Hahn
Columbia University Astrophysics Laboratory
646-708-3461
Daniel Savin
Columbia University Astrophysics Laboratory
646-707-4937
The manuscript can be found at: http://arxiv.org/abs/1302.5403

Beth Kwon | EurekAlert!
Further information:
http://www.columbia.edu

More articles from Physics and Astronomy:

nachricht New manifestation of magnetic monopoles discovered
08.12.2017 | Institute of Science and Technology Austria

nachricht NASA's SuperTIGER balloon flies again to study heavy cosmic particles
07.12.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

Im Focus: A transistor of graphene nanoribbons

Transistors based on carbon nanostructures: what sounds like a futuristic dream could be reality in just a few years' time. An international research team working with Empa has now succeeded in producing nanotransistors from graphene ribbons that are only a few atoms wide, as reported in the current issue of the trade journal "Nature Communications."

Graphene ribbons that are only a few atoms wide, so-called graphene nanoribbons, have special electrical properties that make them promising candidates for the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

Blockchain is becoming more important in the energy market

05.12.2017 | Event News

 
Latest News

Making fuel out of thick air

08.12.2017 | Life Sciences

Rules for superconductivity mirrored in 'excitonic insulator'

08.12.2017 | Information Technology

Smartphone case offers blood glucose monitoring on the go

08.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>