Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Ah, that new car smell: NASA technology protects spacecraft from outgassed molecular contaminants

Outgassing — the physical process that creates that oh-so-alluring new car smell — isn't healthy for humans and, as it turns out, not particularly wholesome for sensitive satellite instruments, either. But a team of NASA engineers has created a new way to protect those instruments from its ill effects.

For some people, the best part about buying a new car is its factory-fresh new car smell, a distinctive aroma created when the chemicals and residual solvents used to manufacture dashboards, car seats, carpeting and other vehicle appointments outgas and fill the cabin.

While the scent may be alluring to some, many researchers believe exposure to these gases isn't particularly healthy — so unhealthy, in fact, that some recommend that drivers keep their new cars ventilated while driving.

Outgassed solvents, epoxies, lubricants, and other materials aren't especially wholesome for contamination-sensitive telescope mirrors, thermal-control units, high-voltage electronic boxes, cryogenic instruments, detectors and solar arrays, either. As a result, NASA engineers are always looking for new techniques to prevent these gases from adhering to instrument and spacecraft surfaces and potentially shortening their lives.

A group of technologists has created a low-cost, easy-to-apply solution, which is more effective than current techniques.

Led by Principal Investigator Sharon Straka, an engineer at NASA's Goddard Space Flight Center in Greenbelt, Md., the team has created a new, patent-pending sprayable paint that adsorbs these gaseous molecules and stops them from affixing to instrument components. Made of zeolite, a mineral widely used in industry for water purification and other uses, and a colloidal silica binder that acts as the glue holding the coating together, the new molecular adsorber is highly permeable and porous — attributes that trap the outgassed contaminants. Because it doesn't contain volatile organics, the material itself doesn't cause additional outgassing.

"It looks promising," Straka said. "It collects significantly more contaminants than other approaches."

Advantages Over Current Techniques
Instrument developers currently use zeolite-coated cordierite devices that look like hockey pucks. Because each individual puck has limited adsorbing capabilities, instrument designers must install multiple units, which require complex mounting hardware. "These devices are big, heavy and chunky, and take up a lot of real estate," explained Co-Principal Investigator Mark Hasegawa, of NASA Goddard.

The new paint, however, overcomes these limitations by providing a low-mass alternative. Because technicians can spray the paint directly onto surfaces, no extra mounting equipment is necessary. In addition, technicians can coat adhesive strips or tape and then place these pieces in strategic locations within an instrument, spacecraft cavity, or vacuum system, further simplifying adsorber design. "This is an easy technology to insert at a relatively low risk and cost," Hasegawa said "The benefits are significant."

Since its development, Northrop Grumman, Redondo Beach, Calif.; the European Space Agency; the Laboratory for Atmospheric and Space Physics at the University of Colorado at Boulder; and Spica Technologies of Hollis, N.H., have expressed interest in using the material, Straka said. In addition, NASA's ICESat2 ATLAS project is evaluating its use, pending the outcome of additional tests, she said.

The team plans to tweak its recipe to enhance the paint's performance and experiment with different pigments, mainly black, to create a coating to absorb stray light that can overcome the light scientists actually want to gather. Straka also believes the technology could be used on the International Space Station or future space habitats to trap pollutants and odors in crew quarters.

"We're ready for primetime," Straka said. "The coating is undergoing qualification tests and is ready for infusion into flight projects or ground vacuum systems."

Lori Keesey | EurekAlert!
Further information:

More articles from Physics and Astronomy:

nachricht A new kind of quantum bits in two dimensions
19.03.2018 | Vienna University of Technology

nachricht 'Frequency combs' ID chemicals within the mid-infrared spectral region
16.03.2018 | American Institute of Physics

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

A new kind of quantum bits in two dimensions

19.03.2018 | Physics and Astronomy

Scientists have a new way to gauge the growth of nanowires

19.03.2018 | Materials Sciences

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Science & Research
Overview of more VideoLinks >>>