Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New 'soft' motor made from artificial muscles

"Perhaps the earliest public demonstration of an electric motor," writes a team of researchers from the University of Auckland in New Zealand, "involved the automatic rotation of a turkey on a spit over a fire" at a party put on by Benjamin Franklin in 1749.

Franklin's electrostatic motor was self-commutating, meaning that it was able to provide a continuous torque while it turned without requiring external electronics to control its progress.

Using artificial muscles, hyper-elastic materials that expand when a charge is applied, the New Zealand team has made a prototype for a self-commutating artificial muscle motor that does not require external electronics or hard metal parts. The researchers describe the device in a paper accepted to the American Institute of Physics' journal Applied Physics Letters.

The team's proof-of-concept motor is controlled with carbon-based switches whose resistances change when they are compressed, which activates artificial muscles that rotate a shaft. The artificial muscles, in turn, are able to activate the switches by their movements. All that is required to operate the device is a direct current input voltage.

Among the advantages of these electrostatic motors compared to their harder, bulkier electromagnetic cousins, the authors write, is that they are capable of delivering higher torque, require low currents instead of high, and can have a flatter profile. The new motor in its current state is inefficient, but the authors hope their prototype will open the door to a softer, lighter future for electrostatic motors, with applications in areas such as prosthetics and soft robots – applications well beyond "simply barbecuing poultry."

Article: "Rotating turkeys and self-commutating artificial muscle motors" is accepted for publication in Applied Physics Letters.

Authors: Benjamin M. O'Brien (1), Thomas G. McKay (1), Todd A. Gisby (1), and Iain A. Anderson (1, 2).

(1) Biomimetics Lab, Auckland Bioengineering Institute, The University of Auckland

(2) Department of Engineering Science, The University of Auckland

Jennifer Lauren Lee | EurekAlert!
Further information:

More articles from Physics and Astronomy:

nachricht Move over, lasers: Scientists can now create holograms from neutrons, too
21.10.2016 | National Institute of Standards and Technology (NIST)

nachricht Finding the lightest superdeformed triaxial atomic nucleus
20.10.2016 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>