Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New 'soft' motor made from artificial muscles

16.02.2012
"Perhaps the earliest public demonstration of an electric motor," writes a team of researchers from the University of Auckland in New Zealand, "involved the automatic rotation of a turkey on a spit over a fire" at a party put on by Benjamin Franklin in 1749.

Franklin's electrostatic motor was self-commutating, meaning that it was able to provide a continuous torque while it turned without requiring external electronics to control its progress.

Using artificial muscles, hyper-elastic materials that expand when a charge is applied, the New Zealand team has made a prototype for a self-commutating artificial muscle motor that does not require external electronics or hard metal parts. The researchers describe the device in a paper accepted to the American Institute of Physics' journal Applied Physics Letters.

The team's proof-of-concept motor is controlled with carbon-based switches whose resistances change when they are compressed, which activates artificial muscles that rotate a shaft. The artificial muscles, in turn, are able to activate the switches by their movements. All that is required to operate the device is a direct current input voltage.

Among the advantages of these electrostatic motors compared to their harder, bulkier electromagnetic cousins, the authors write, is that they are capable of delivering higher torque, require low currents instead of high, and can have a flatter profile. The new motor in its current state is inefficient, but the authors hope their prototype will open the door to a softer, lighter future for electrostatic motors, with applications in areas such as prosthetics and soft robots – applications well beyond "simply barbecuing poultry."

Article: "Rotating turkeys and self-commutating artificial muscle motors" is accepted for publication in Applied Physics Letters.

Authors: Benjamin M. O'Brien (1), Thomas G. McKay (1), Todd A. Gisby (1), and Iain A. Anderson (1, 2).

(1) Biomimetics Lab, Auckland Bioengineering Institute, The University of Auckland

(2) Department of Engineering Science, The University of Auckland

Jennifer Lauren Lee | EurekAlert!
Further information:
http://www.aip.org

More articles from Physics and Astronomy:

nachricht Quantum optical sensor for the first time tested in space – with a laser system from Berlin
23.01.2017 | Ferdinand-Braun-Institut Leibniz-Institut für Höchstfrequenztechnik

nachricht SF State astronomer searches for signs of life on Wolf 1061 exoplanet
20.01.2017 | San Francisco State University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

Quantum optical sensor for the first time tested in space – with a laser system from Berlin

23.01.2017 | Physics and Astronomy

The interactome of infected neural cells reveals new therapeutic targets for Zika

23.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>