Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


SIV infection may lead to increase in immune-suppressive Treg cells

Original research and accompanying editorial highlight mechanism for regulatory T-cell accumulation in lymphoid tissue
Tissue in monkeys infected with a close relative of HIV can ramp up production of a type of T cell that actually weakens the body's attack against the invading virus. The discovery, in lymph nodes draining the intestinal tract, could help explain how the HIV virus evades the body's immune defenses.

If the same pattern is found in people infected with HIV, the finding could lead to a treatment strategy that slows the production of this restraining type of T cell. This would let the immune soldiers go after the virus more aggressively.

The scientists don't know if the simian virus is directly causing the build-up of the inhibitory T cells, called regulatory T cells, but in any case, reducing regulatory T-cell production could boost the body's resistance to the evasive virus.

The research was a collaboration among scientists at the UC Davis School of Medicine, Cincinnati Children's Hospital and the California National Primate Center.

Regulatory T cells, or Tregs, normally tamp down immune-system attacks, presumably to prevent an over-active assault that can cause harmful inflammation or auto-immune disease. The scientists suspect that the high number of Treg cells in the infected primates might prevent their immune systems from mounting a full-on attack against the virus.

The researchers focused on immune cells called dendritic cells that interact with Tregs in preparation for their policing duty. This occurs in lymph nodes throughout the body's lymphatic system -- the part of the circulatory system that also drains many organs of fluids, fatty acids and other substances.

The study found that mature dendritic cells were particularly active in promoting Treg production, and that these promoters were in high concentration in nodes draining the intestine, or mucosa. The intestinal mucosa is the site of early infection and aggressive transmission for both the primate virus and HIV, making it the first line of defense against the invasion.

"The intestinal mucosa contains highly activated 'helper' T-cells that are prime targets for the HIV virus, so it is important to understand how the body fights HIV in this under-studied tissue," said Barbara Shacklett, associate professor of medical microbiology and immunology at the UC Davis School of Medicine.

"We consider the GI tract as a major 'battlefield' between the immune system and HIV. If we can better understand what happens there, we may finally learn how to eradicate the virus," said Shacklett.

Shacklett is a co-author of a paper on the research, entitled "Myeloid dendritic cells isolated from tissues of SIV-infected Rhesus macaques promote the induction of regulatory T cells," published Jan. 28 in the journal AIDS. Julia Shaw, a graduate student in Shacklett's lab, co-led the research with Pietro Presicce of the Cincinnati Children's Hospital Research Foundation.

An editorial in the same issue of AIDS highlights the new research and related studies that are clarifying the interaction between the simian version of HIV and the Treg cells that can control attacks against them.

Shacklett stressed that Tregs usually increase when the immune system is at risk of over-reacting. Their high numbers lead to a reduced immune attack, although the mechanism is not well understood.

But in persistent infections -- when a strong immune response is called for -- Tregs should decrease in number, taking a "hands-off" approach and freeing the immune army to advance. HIV may sabotage this control by prompting increased Treg production as if the body need not rally its defenses against the virus.

The research draws on earlier research by Shacklett, Shaw and colleagues comparing Treg counts in rectal mucosa of people with high and low HIV viral load. They showed that high viral load was associated with increased frequencies of immunosuppressive Treg in the gastrointestinal mucosa, suggesting these Tregs might be thwarting the body's immune defenses.

Other coauthors on the new research paper are Claire Chougnet, an associate professor of molecular immunology at University of Cincinnati College of Medicine, and Christopher Miller of the California National Primate Research Center.

The research was supported in part by the California National Primate Research Center's Pilot Project award funded by BaseGrant NCRR-RR-000169 and the National Institutes of Health grants AI8227, AI068524 and AI057020.

The UC Davis School of Medicine is among the nation's leading medical schools, recognized for its research and primary-care programs. The school offers fully accredited master's degree programs in public health and in informatics, and its combined M.D.-Ph.D. program is training the next generation of physician-scientists to conduct high-impact research and translate discoveries into better clinical care. Along with being a recognized leader in medical research, the school is committed to serving underserved communities and advancing rural health. For more information, visit UC Davis School of Medicine at

Carole Gan | EurekAlert!
Further information:

Further reports about: Aids HIV HIV virus Medicine SIV T cells T-cell dendritic cells fatty acid immune cell immune defense immune system lymph node primate

More articles from Health and Medicine:

nachricht Resolving the mystery of preeclampsia
21.10.2016 | Universitätsklinikum Magdeburg

nachricht New potential cancer treatment using microwaves to target deep tumors
12.10.2016 | University of Texas at Arlington

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>