Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

SIV infection may lead to increase in immune-suppressive Treg cells

15.02.2012
Original research and accompanying editorial highlight mechanism for regulatory T-cell accumulation in lymphoid tissue
Tissue in monkeys infected with a close relative of HIV can ramp up production of a type of T cell that actually weakens the body's attack against the invading virus. The discovery, in lymph nodes draining the intestinal tract, could help explain how the HIV virus evades the body's immune defenses.

If the same pattern is found in people infected with HIV, the finding could lead to a treatment strategy that slows the production of this restraining type of T cell. This would let the immune soldiers go after the virus more aggressively.

The scientists don't know if the simian virus is directly causing the build-up of the inhibitory T cells, called regulatory T cells, but in any case, reducing regulatory T-cell production could boost the body's resistance to the evasive virus.

The research was a collaboration among scientists at the UC Davis School of Medicine, Cincinnati Children's Hospital and the California National Primate Center.

Regulatory T cells, or Tregs, normally tamp down immune-system attacks, presumably to prevent an over-active assault that can cause harmful inflammation or auto-immune disease. The scientists suspect that the high number of Treg cells in the infected primates might prevent their immune systems from mounting a full-on attack against the virus.

The researchers focused on immune cells called dendritic cells that interact with Tregs in preparation for their policing duty. This occurs in lymph nodes throughout the body's lymphatic system -- the part of the circulatory system that also drains many organs of fluids, fatty acids and other substances.

The study found that mature dendritic cells were particularly active in promoting Treg production, and that these promoters were in high concentration in nodes draining the intestine, or mucosa. The intestinal mucosa is the site of early infection and aggressive transmission for both the primate virus and HIV, making it the first line of defense against the invasion.

"The intestinal mucosa contains highly activated 'helper' T-cells that are prime targets for the HIV virus, so it is important to understand how the body fights HIV in this under-studied tissue," said Barbara Shacklett, associate professor of medical microbiology and immunology at the UC Davis School of Medicine.

"We consider the GI tract as a major 'battlefield' between the immune system and HIV. If we can better understand what happens there, we may finally learn how to eradicate the virus," said Shacklett.

Shacklett is a co-author of a paper on the research, entitled "Myeloid dendritic cells isolated from tissues of SIV-infected Rhesus macaques promote the induction of regulatory T cells," published Jan. 28 in the journal AIDS. Julia Shaw, a graduate student in Shacklett's lab, co-led the research with Pietro Presicce of the Cincinnati Children's Hospital Research Foundation.

An editorial in the same issue of AIDS highlights the new research and related studies that are clarifying the interaction between the simian version of HIV and the Treg cells that can control attacks against them.

Shacklett stressed that Tregs usually increase when the immune system is at risk of over-reacting. Their high numbers lead to a reduced immune attack, although the mechanism is not well understood.

But in persistent infections -- when a strong immune response is called for -- Tregs should decrease in number, taking a "hands-off" approach and freeing the immune army to advance. HIV may sabotage this control by prompting increased Treg production as if the body need not rally its defenses against the virus.

The research draws on earlier research by Shacklett, Shaw and colleagues comparing Treg counts in rectal mucosa of people with high and low HIV viral load. They showed that high viral load was associated with increased frequencies of immunosuppressive Treg in the gastrointestinal mucosa, suggesting these Tregs might be thwarting the body's immune defenses.

Other coauthors on the new research paper are Claire Chougnet, an associate professor of molecular immunology at University of Cincinnati College of Medicine, and Christopher Miller of the California National Primate Research Center.

The research was supported in part by the California National Primate Research Center's Pilot Project award funded by BaseGrant NCRR-RR-000169 and the National Institutes of Health grants AI8227, AI068524 and AI057020.

The UC Davis School of Medicine is among the nation's leading medical schools, recognized for its research and primary-care programs. The school offers fully accredited master's degree programs in public health and in informatics, and its combined M.D.-Ph.D. program is training the next generation of physician-scientists to conduct high-impact research and translate discoveries into better clinical care. Along with being a recognized leader in medical research, the school is committed to serving underserved communities and advancing rural health. For more information, visit UC Davis School of Medicine at medschool.ucdavis.edu

Carole Gan | EurekAlert!
Further information:
http://www.ucdmc.ucdavis.edu

Further reports about: Aids HIV HIV virus Medicine SIV T cells T-cell dendritic cells fatty acid immune cell immune defense immune system lymph node primate

More articles from Health and Medicine:

nachricht Chronic stress induces fatal organ dysfunctions via a new neural circuit
21.08.2017 | Hokkaido University

nachricht New malaria analysis method reveals disease severity in minutes
14.08.2017 | University of British Columbia

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Nagoya physicists resolve long-standing mystery of structure-less transition

21.08.2017 | Materials Sciences

Chronic stress induces fatal organ dysfunctions via a new neural circuit

21.08.2017 | Health and Medicine

Scientists from the MSU studied new liquid-crystalline photochrom

21.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>