Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New screening strategy may catch ovarian cancer at early stages

26.08.2013
A new screening strategy for ovarian cancer appears to be highly specific for detecting the disease before it becomes lethal.

The strategy is described in a study published early online in Cancer, a peer-reviewed journal of the American Cancer Society. If verified in an ongoing clinical trial, it could potentially help save the lives of thousands of women each year in the United States alone.

There currently are no established screening strategies for ovarian cancer. The disease often causes no specific symptoms and is difficult to detect in the early stages when it is most responsive to treatment. Therefore, ovarian cancer is highly lethal because most women have advanced disease when they are diagnosed.

Karen Lu, MD, of The University of Texas MD Anderson Cancer Center in Houston, led a team that tested the potential of a two-stage ovarian cancer screening strategy that incorporates changes in a blood protein called CA125, which is a known tumor marker. In their 11-year study, 4051 post- menopausal women initially underwent an annual CA125 blood test.

Based on a calculation called the "Risk of Ovarian Cancer Algorithm," women were divided into three groups: those who should receive another CA125 test one year later (low risk), those who should receive a repeat CA125 in three months (intermediate risk), and those who should receive a transvaginal ultrasound and be referred to a gynecologic oncologist (high risk).

An average of 5.8 percent of women were found to be of intermediate risk each year, meaning that they should receive a CA125 test in three months. The average annual referral rate to transvaginal ultrasound and review by a gynecologic oncologist was 0.9 percent. Ten women underwent surgery based on their ultrasound exams, with four having invasive ovarian cancers, two having ovarian tumors of low malignant potential, one having endometrial cancer, and three having benign ovarian tumors.

This equates to a positive predictive value of 40 percent for detecting invasive ovarian cancer. The specificity of the testing strategy was 99.9 percent, meaning that only 0.1 percent of patients without cancer would be falsely identified as having the disease. Importantly, all of the ovarian cancers were early stage.

The findings indicate that this screening strategy achieves high specificity with very few false positive results in post-menopausal women. "The results from our study are not practice-changing at this time; however, our findings suggest that using a longitudinal (or change over time) screening strategy may be beneficial in post-menopausal women with an average risk of developing ovarian cancer," said Dr. Lu. "We are currently waiting for the results of a larger, randomized study currently being conducted in the United Kingdom that uses the same Risk of Ovarian Cancer Algorithm in a similar population of women. If the results of this study are also positive, then this will result in a change in practice."

Amy Molnar | EurekAlert!
Further information:
http://www.wiley.com

More articles from Health and Medicine:

nachricht Laser activated gold pyramids could deliver drugs, DNA into cells without harm
24.03.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

nachricht What does congenital Zika syndrome look like?
24.03.2017 | University of California - San Diego

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>