Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists discover the basis of allergic reactions

05.06.2014

The reason why many people are allergic to birch pollen has not been fully clarified yet. It is known that a specific birch pollen protein causes the immune system to overreact.

What makes it an allergen has now been discovered by scientists at the Vetmeduni Vienna. The pollen protein can bind iron. Without iron load the protein becomes an allergen. Environmental factors are possibly the reason for low iron loads in plants. This could explain the increasing numbers of allergies. The research data were published in the Journal of Biological Chemistry.


Birch blossoms release their pollen with the molecule Bet v 1 (turquoise). Bet v 1 loaded with an iron-containing ligand (yellow with gray ball) does not act as an allergen. (Photo: Fotolia.com © lochstampfer, modified by Prof. Luis F. Pacios, Madrid)

Allergies in humans and animals are on the increase. An allergic reaction may cause unpleasant symptoms like hay fever, food intolerance or skin rashes. Allergic reactions may also cause acute and life-threatening symptoms, such as asthma or anaphylactic shock.

A single pollen protein is responsible for allergies

One of the most well known allergens, i.e. substances that cause allergies, is so-called “Bet v 1” from birch pollen (Betula verrucosa). The protein was first produced artificially in the laboratory 25 years ago in Vienna, and is being used as an allergen model for research throughout the world. “Bet v 1” is the principal allergen among hundreds of other proteins of birch pollen. It renders the immune system hypersensitive and leads to the formation of disease-causing antibodies known as IgE immunoglobulins in 95 percent of persons with a pollen allergy.

Birch pollen protein in its iron-loaded state is not allergenic

Until recently it was not known why harmless molecules trigger allergies at all. Scientist Franziska Roth-Walter and her colleagues from the Messerli Research Institute have now found the possible cause. The birch pollen protein “Bet v 1” is very similar to the human protein Lipocalin 2 in terms of structure; Lipocalin 2 is mainly present in the lung. Lipocalin 2 and “Bet v 1” possess so-called molecular pockets with which they can bind iron.

When these pockets remain empty, the birch pollen protein becomes an allergen and is liable to cause allergic reactions in humans and animals. The protein manipulates so-called T-helper 2 cells (Th2 cells), a certain type of immune cells, towards allergy. The human protein Lipocalin 2 also performs tasks of the immune system, depending on its iron loading.

Origin of allergy investigated in the model of birch pollen

In allergic people and other mammals, Th2 cells are predominant compared to Th1 cells. Th2 cells play an important role in allergic reactions and in combating parasites. Th1 cells serve to defend the body against bacterial and viral infections. "A typical feature of allergies is the disruption of the balance between the Th1 and Th2 immune response," explains Professor Erika Jensen-Jarolim, head of the Department of Comparative Medicine at the Messerli Research Institute.

"Investigations currently in progress indicate that we can directly transfer the principle of birch pollen allergens to other allergens with a similar molecular structure. We are thus starting to understand - for the first time - why allergies to pollen, foodstuffs and fungal spores actually arise in the first place."

Environmental factors determine the iron loading of the pollen protein

Scientists at the Messerli Research Institute, a combined facility of the Vetmeduni Vienna, the Meduni Vienna an der University of Vienna, are currently investigating the mechanisms that may contribute to reduced iron loading of “Bet v 1” in plants. "Iron loading of the birch protein may be connected to the aggravated environmental conditions acting on plants," says Jensen-Jarolim.

"In fact, there may be a direct connection between environmental pollution and rising allergy statistics. The most important conclusion from our work is that, in the future, it would make sense to specifically load allergenic molecules of the “Bet v 1” type with iron when they are used as allergy-specific immunotherapy in allergic patients. By doing so, this treatment - which currently takes two to four years - can be greatly shortened and its efficiency can thus be enhanced."

The article „ Bet v 1 from Birch Pollen is a Lipocalin-like Protein acting as Allergen only when devoid of Iron by promoting Th2 lymphocytes“, by Franziska Roth-Walter, Cristina Gomez-Casado, Luis F. Pacios, Nadine Mothes-Lucksch, Georg A. Roth, Josef Singer, Araceli Diaz-Perales and Erika Jensen-Jarolim was published in the Journal of Biological Chemistry. doi: 10.1074/jbc.M114.567875
http://www.jbc.org/content/early/2014/05/07/jbc.M114.567875.long

About the University of Veterinary Medicine, Vienna
The University of Veterinary Medicine, Vienna in Austria is one of the leading academic and research institutions in the field of Veterinary Sciences in Europe. About 1,200 employees and 2,300 students work on the campus in the north of Vienna which also houses five university clinics and various research sites. Outside of Vienna the university operates Teaching and Research Farms. http://www.vetmeduni.ac.at

Scientific Contact:
Prof. Erika Jensen-Jarolim
Messerli Research Institute – Comparative Medicine
University of Veterinary Medicine Vienna (Vetmeduni Vienna)
T +43 1 20577-2660
M +43 664 60257-6260
erika.jensen-jarolim@vetmeduni.ac.at

Scientific Contact:
Dr. Franziska Roth-Walter
Messerli Research Institute – Comparative Medicine
University of Veterinary Medicine Vienna (Vetmeduni Vienna)
M +43 664 60257 6261
franziska.roth-walter@vetmeduni.ac.at

Released by:
Susanna Kautschitsch
Science Communication / Public Relations
University of Veterinary Medicine Vienna (Vetmeduni Vienna)
T +43 1 25077-1153
susanna.kautschitsch@vetmeduni.ac.at

Weitere Informationen:

http://www.vetmeduni.ac.at/en/infoservice/presseinformation/press-releases-2014/...

Dr. Susanna Kautschitsch | idw - Informationsdienst Wissenschaft

Further reports about: Environmental Iron Medicine Veterinary Vetmeduni allergens allergies structure symptoms

More articles from Health and Medicine:

nachricht Tracking movement of immune cells identifies key first steps in inflammatory arthritis
23.01.2017 | Massachusetts General Hospital

nachricht Team discovers how bacteria exploit a chink in the body's armor
20.01.2017 | University of Illinois at Urbana-Champaign

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Tracking movement of immune cells identifies key first steps in inflammatory arthritis

23.01.2017 | Health and Medicine

Electrocatalysis can advance green transition

23.01.2017 | Physics and Astronomy

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>