Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists discover the basis of allergic reactions

05.06.2014

The reason why many people are allergic to birch pollen has not been fully clarified yet. It is known that a specific birch pollen protein causes the immune system to overreact.

What makes it an allergen has now been discovered by scientists at the Vetmeduni Vienna. The pollen protein can bind iron. Without iron load the protein becomes an allergen. Environmental factors are possibly the reason for low iron loads in plants. This could explain the increasing numbers of allergies. The research data were published in the Journal of Biological Chemistry.


Birch blossoms release their pollen with the molecule Bet v 1 (turquoise). Bet v 1 loaded with an iron-containing ligand (yellow with gray ball) does not act as an allergen. (Photo: Fotolia.com © lochstampfer, modified by Prof. Luis F. Pacios, Madrid)

Allergies in humans and animals are on the increase. An allergic reaction may cause unpleasant symptoms like hay fever, food intolerance or skin rashes. Allergic reactions may also cause acute and life-threatening symptoms, such as asthma or anaphylactic shock.

A single pollen protein is responsible for allergies

One of the most well known allergens, i.e. substances that cause allergies, is so-called “Bet v 1” from birch pollen (Betula verrucosa). The protein was first produced artificially in the laboratory 25 years ago in Vienna, and is being used as an allergen model for research throughout the world. “Bet v 1” is the principal allergen among hundreds of other proteins of birch pollen. It renders the immune system hypersensitive and leads to the formation of disease-causing antibodies known as IgE immunoglobulins in 95 percent of persons with a pollen allergy.

Birch pollen protein in its iron-loaded state is not allergenic

Until recently it was not known why harmless molecules trigger allergies at all. Scientist Franziska Roth-Walter and her colleagues from the Messerli Research Institute have now found the possible cause. The birch pollen protein “Bet v 1” is very similar to the human protein Lipocalin 2 in terms of structure; Lipocalin 2 is mainly present in the lung. Lipocalin 2 and “Bet v 1” possess so-called molecular pockets with which they can bind iron.

When these pockets remain empty, the birch pollen protein becomes an allergen and is liable to cause allergic reactions in humans and animals. The protein manipulates so-called T-helper 2 cells (Th2 cells), a certain type of immune cells, towards allergy. The human protein Lipocalin 2 also performs tasks of the immune system, depending on its iron loading.

Origin of allergy investigated in the model of birch pollen

In allergic people and other mammals, Th2 cells are predominant compared to Th1 cells. Th2 cells play an important role in allergic reactions and in combating parasites. Th1 cells serve to defend the body against bacterial and viral infections. "A typical feature of allergies is the disruption of the balance between the Th1 and Th2 immune response," explains Professor Erika Jensen-Jarolim, head of the Department of Comparative Medicine at the Messerli Research Institute.

"Investigations currently in progress indicate that we can directly transfer the principle of birch pollen allergens to other allergens with a similar molecular structure. We are thus starting to understand - for the first time - why allergies to pollen, foodstuffs and fungal spores actually arise in the first place."

Environmental factors determine the iron loading of the pollen protein

Scientists at the Messerli Research Institute, a combined facility of the Vetmeduni Vienna, the Meduni Vienna an der University of Vienna, are currently investigating the mechanisms that may contribute to reduced iron loading of “Bet v 1” in plants. "Iron loading of the birch protein may be connected to the aggravated environmental conditions acting on plants," says Jensen-Jarolim.

"In fact, there may be a direct connection between environmental pollution and rising allergy statistics. The most important conclusion from our work is that, in the future, it would make sense to specifically load allergenic molecules of the “Bet v 1” type with iron when they are used as allergy-specific immunotherapy in allergic patients. By doing so, this treatment - which currently takes two to four years - can be greatly shortened and its efficiency can thus be enhanced."

The article „ Bet v 1 from Birch Pollen is a Lipocalin-like Protein acting as Allergen only when devoid of Iron by promoting Th2 lymphocytes“, by Franziska Roth-Walter, Cristina Gomez-Casado, Luis F. Pacios, Nadine Mothes-Lucksch, Georg A. Roth, Josef Singer, Araceli Diaz-Perales and Erika Jensen-Jarolim was published in the Journal of Biological Chemistry. doi: 10.1074/jbc.M114.567875
http://www.jbc.org/content/early/2014/05/07/jbc.M114.567875.long

About the University of Veterinary Medicine, Vienna
The University of Veterinary Medicine, Vienna in Austria is one of the leading academic and research institutions in the field of Veterinary Sciences in Europe. About 1,200 employees and 2,300 students work on the campus in the north of Vienna which also houses five university clinics and various research sites. Outside of Vienna the university operates Teaching and Research Farms. http://www.vetmeduni.ac.at

Scientific Contact:
Prof. Erika Jensen-Jarolim
Messerli Research Institute – Comparative Medicine
University of Veterinary Medicine Vienna (Vetmeduni Vienna)
T +43 1 20577-2660
M +43 664 60257-6260
erika.jensen-jarolim@vetmeduni.ac.at

Scientific Contact:
Dr. Franziska Roth-Walter
Messerli Research Institute – Comparative Medicine
University of Veterinary Medicine Vienna (Vetmeduni Vienna)
M +43 664 60257 6261
franziska.roth-walter@vetmeduni.ac.at

Released by:
Susanna Kautschitsch
Science Communication / Public Relations
University of Veterinary Medicine Vienna (Vetmeduni Vienna)
T +43 1 25077-1153
susanna.kautschitsch@vetmeduni.ac.at

Weitere Informationen:

http://www.vetmeduni.ac.at/en/infoservice/presseinformation/press-releases-2014/...

Dr. Susanna Kautschitsch | idw - Informationsdienst Wissenschaft

Further reports about: Environmental Iron Medicine Veterinary Vetmeduni allergens allergies structure symptoms

More articles from Health and Medicine:

nachricht Project start: New active substance targeting dreaded hospital pathogens
29.05.2015 | Deutsches Zentrum für Infektionsforschung

nachricht Tumor surroundings are shown to affect progression of different cancer subtypes
28.05.2015 | Cold Spring Harbor Laboratory

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Solid-state photonics goes extreme ultraviolet

Using ultrashort laser pulses, scientists in Max Planck Institute of Quantum Optics have demonstrated the emission of extreme ultraviolet radiation from thin dielectric films and have investigated the underlying mechanisms.

In 1961, only shortly after the invention of the first laser, scientists exposed silicon dioxide crystals (also known as quartz) to an intense ruby laser to...

Im Focus: Advance in regenerative medicine

The only professorship in Germany to date, one master's programme, one laboratory with worldwide unique equipment and the corresponding research results: The University of Würzburg is leading in the field of biofabrication.

Paul Dalton is presently the only professor of biofabrication in Germany. About a year ago, the Australian researcher relocated to the Würzburg department for...

Im Focus: Basel Physicists Develop Efficient Method of Signal Transmission from Nanocomponents

Physicists have developed an innovative method that could enable the efficient use of nanocomponents in electronic circuits. To achieve this, they have developed a layout in which a nanocomponent is connected to two electrical conductors, which uncouple the electrical signal in a highly efficient manner. The scientists at the Department of Physics and the Swiss Nanoscience Institute at the University of Basel have published their results in the scientific journal “Nature Communications” together with their colleagues from ETH Zurich.

Electronic components are becoming smaller and smaller. Components measuring just a few nanometers – the size of around ten atoms – are already being produced...

Im Focus: IoT-based Advanced Automobile Parking Navigation System

Development and implementation of an advanced automobile parking navigation platform for parking services

To fulfill the requirements of the industry, PolyU researchers developed the Advanced Automobile Parking Navigation Platform, which includes smart devices,...

Im Focus: First electrical car ferry in the world in operation in Norway now

  • Siemens delivers electric propulsion system and charging stations with lithium-ion batteries charged from hydro power
  • Ferry only uses 150 kilowatt hours (kWh) per route and reduces cost of fuel by 60 percent
  • Milestone on the road to operating emission-free ferries

The world's first electrical car and passenger ferry powered by batteries has entered service in Norway. The ferry only uses 150 kWh per route, which...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International symposium: trends in spatial analysis and modelling for a more sustainable land use

20.05.2015 | Event News

15th conference of the International Association of Colloid and Interface Scientists

18.05.2015 | Event News

EHFG 2015: Securing health in Europe. Balancing priorities, sharing responsibilities

12.05.2015 | Event News

 
Latest News

Siemens will provide the first H-class power plant technology in Mexico

28.05.2015 | Press release

Merging galaxies break radio silence

28.05.2015 | Physics and Astronomy

A New Kind of Wood Chip: Collaboration Could Yield Biodegradable Computer Chips

28.05.2015 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>