Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists define important gene interaction that drives aggressive brain cancer

12.12.2014

Targeted therapies are a growing and groundbreaking field in cancer care in which drugs or other substances are designed to interfere with genes or molecules that control the growth and survival of cancer cells.

Now, scientists at Virginia Commonwealth University Massey Cancer Center and VCU Institute of Molecular Medicine (VIMM) have identified a novel interaction between a microRNA and a gene that could lead to new therapies for the most common and deadly form of brain tumor, malignant glioma.

In a study recently published in the journal Neuro-Oncology, a team of scientists led by Luni Emdad, M.B.B.S., Ph.D., and Paul B. Fisher, M.Ph., Ph.D., provided the first evidence of an important link between a specific microRNA, miR-184, and a cancer promoting gene, SND1, in the regulation of malignant glioma. miR-184 is known to suppress tumor development by regulating a variety of genes involved in cancer growth, while SND1 has been shown to play a significant role in the development of breast, colon, prostate and liver cancers.

Through a variety of preclinical experiments, the team demonstrated that increasing the expression of miR-184 slows the growth and invasive characteristics of glioma cells through direct regulation of SND1. Additionally, they showed that reduced levels of SND1 led to reduced levels of STAT3, a gene that has been shown to promote the most lethal characteristics of brain cancer.

"Patients suffering from brain tumors are in desperate need of improved therapies," says Fisher, Thelma Newmeyer Corman Endowed Chair in Cancer Research and co-leader of the Cancer Molecular Genetics research program at VCU Massey Cancer Center, chairman of the Department of Human and Molecular Genetics at VCU School of Medicine and director of the VIMM. "We're hopeful that this new understanding of the relationship between miR-184 and SND1 ultimately will lead to the development of new drugs that reduce SND1 expression and improve patient outcomes."

Prior studies have shown that levels of miR-184 are unusually low in tissue samples from patients with malignant gliomas. Using advanced computer analysis techniques designed to study and process biological data, the researchers identified SND1 among a handful of other genes that miR-184 helps regulate. Knowing SND1 is implicated in a variety of cancers and having previously defined its role in liver cancer, Emdad, Fisher and their colleagues explored this relationship further.

They confirmed low levels of miR-184 expression in human glioma tissue samples and cultured cell lines as well as an increase in the expression of SND1 compared to normal brain tissue. Using data from a large public brain tumor database called REMBRANDT, the researchers confirmed that patients with lower levels of SND1 survived longer than those with elevated SND1 expression.

"We still have a long way to go and many challenges to overcome before we will have therapies that are ready for clinical use, but this is a significant first step in the process," says Emdad, member of the Cancer Molecular Genetics research program at Massey, assistant professor in the VCU Department of Human and Molecular Genetics and member of the VIMM. "Future studies will aim to explore the relationship between SND1 and STAT3, identify additional microRNAs that may be relevant to malignant glioma and explore the effects of drugs that block SND1 expression in more advanced preclinical models."

###

Fisher and Emdad collaborated with Devanand Sarkar, M.B.B.S., Ph.D., Harrison Scholar and member of the Cancer Molecular Genetics research program at Massey, Blick Scholar and associate professor in the Department of Human and Molecular Genetics at the VCU School of Medicine and member of the VIMM; Swadesh K. Das, Ph.D., member of the Cancer Molecular Genetics research program at Massey, member of the VIMM and assistant professor in the VCU Department of Human and Molecular Genetics; Mitchell E. Menezes, Ph.D., Prasanna K. Santhekadur, Ph.D., and Bin Hu, Ph.D., all postdoctoral research scientists in the VCU Department of Human and Molecular Genetics; and Aleksandar Janjic, Mohammad Al-Zubi and Xue-Ning Shen, all research technicians in the VCU Department of Human and Molecular Genetics and the VIMM.

The full manuscript of this study is available online at: http://www.ncbi.nlm.nih.gov/pubmed/25216670 .

John Wallace | EurekAlert!
Further information:
http://www.vcu.edu/

Further reports about: CANCER Genetics Molecular VCU brain cancer brain tumor drugs tissue samples

More articles from Health and Medicine:

nachricht Vanishing capillaries
23.03.2017 | Technische Universität München

nachricht How prenatal maternal infections may affect genetic factors in Autism spectrum disorder
22.03.2017 | University of California - San Diego

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>