Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists define important gene interaction that drives aggressive brain cancer

12.12.2014

Targeted therapies are a growing and groundbreaking field in cancer care in which drugs or other substances are designed to interfere with genes or molecules that control the growth and survival of cancer cells.

Now, scientists at Virginia Commonwealth University Massey Cancer Center and VCU Institute of Molecular Medicine (VIMM) have identified a novel interaction between a microRNA and a gene that could lead to new therapies for the most common and deadly form of brain tumor, malignant glioma.

In a study recently published in the journal Neuro-Oncology, a team of scientists led by Luni Emdad, M.B.B.S., Ph.D., and Paul B. Fisher, M.Ph., Ph.D., provided the first evidence of an important link between a specific microRNA, miR-184, and a cancer promoting gene, SND1, in the regulation of malignant glioma. miR-184 is known to suppress tumor development by regulating a variety of genes involved in cancer growth, while SND1 has been shown to play a significant role in the development of breast, colon, prostate and liver cancers.

Through a variety of preclinical experiments, the team demonstrated that increasing the expression of miR-184 slows the growth and invasive characteristics of glioma cells through direct regulation of SND1. Additionally, they showed that reduced levels of SND1 led to reduced levels of STAT3, a gene that has been shown to promote the most lethal characteristics of brain cancer.

"Patients suffering from brain tumors are in desperate need of improved therapies," says Fisher, Thelma Newmeyer Corman Endowed Chair in Cancer Research and co-leader of the Cancer Molecular Genetics research program at VCU Massey Cancer Center, chairman of the Department of Human and Molecular Genetics at VCU School of Medicine and director of the VIMM. "We're hopeful that this new understanding of the relationship between miR-184 and SND1 ultimately will lead to the development of new drugs that reduce SND1 expression and improve patient outcomes."

Prior studies have shown that levels of miR-184 are unusually low in tissue samples from patients with malignant gliomas. Using advanced computer analysis techniques designed to study and process biological data, the researchers identified SND1 among a handful of other genes that miR-184 helps regulate. Knowing SND1 is implicated in a variety of cancers and having previously defined its role in liver cancer, Emdad, Fisher and their colleagues explored this relationship further.

They confirmed low levels of miR-184 expression in human glioma tissue samples and cultured cell lines as well as an increase in the expression of SND1 compared to normal brain tissue. Using data from a large public brain tumor database called REMBRANDT, the researchers confirmed that patients with lower levels of SND1 survived longer than those with elevated SND1 expression.

"We still have a long way to go and many challenges to overcome before we will have therapies that are ready for clinical use, but this is a significant first step in the process," says Emdad, member of the Cancer Molecular Genetics research program at Massey, assistant professor in the VCU Department of Human and Molecular Genetics and member of the VIMM. "Future studies will aim to explore the relationship between SND1 and STAT3, identify additional microRNAs that may be relevant to malignant glioma and explore the effects of drugs that block SND1 expression in more advanced preclinical models."

###

Fisher and Emdad collaborated with Devanand Sarkar, M.B.B.S., Ph.D., Harrison Scholar and member of the Cancer Molecular Genetics research program at Massey, Blick Scholar and associate professor in the Department of Human and Molecular Genetics at the VCU School of Medicine and member of the VIMM; Swadesh K. Das, Ph.D., member of the Cancer Molecular Genetics research program at Massey, member of the VIMM and assistant professor in the VCU Department of Human and Molecular Genetics; Mitchell E. Menezes, Ph.D., Prasanna K. Santhekadur, Ph.D., and Bin Hu, Ph.D., all postdoctoral research scientists in the VCU Department of Human and Molecular Genetics; and Aleksandar Janjic, Mohammad Al-Zubi and Xue-Ning Shen, all research technicians in the VCU Department of Human and Molecular Genetics and the VIMM.

The full manuscript of this study is available online at: http://www.ncbi.nlm.nih.gov/pubmed/25216670 .

John Wallace | EurekAlert!
Further information:
http://www.vcu.edu/

Further reports about: CANCER Genetics Molecular VCU brain cancer brain tumor drugs tissue samples

More articles from Health and Medicine:

nachricht Team discovers how bacteria exploit a chink in the body's armor
20.01.2017 | University of Illinois at Urbana-Champaign

nachricht Rabies viruses reveal wiring in transparent brains
19.01.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>