Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Curry-derived molecules might be too spicy for colorectal cancers

06.11.2007
Findings from the AACR Centennial Conference on Translational Cancer Medicine: From Technology to Treatment Singapore, Nov. 4-8, 2007

Curcumin, the yellowish component of turmeric that gives curry its flavor, has long been noted for its potential anti-cancer properties. Researchers from Tohoku University in Sendai, Japan, report on an apparent improvement upon nature: two molecular analogues of curcumin that demonstrate even greater tumor suppressive properties. The team presented their findings from the first test of these molecules in a mouse model of colorectal cancer today at the American Association for Cancer Research Centennial Conference on Translational Cancer Medicine.

According to Tohoku University researcher Hiroyuki Shibata, M.D., curcumin is one of the most widely studied plant-based chemicals with anti-cancer properties. Research has associated curcumin with several distinct actions, including the suppression of genes that promote cell growth (for example, the destruction of the pro-cancerous protein â catenin), and induction of programmed cell death (apoptosis) in colorectal cancer.

Unfortunately, natural curcumin has what researchers term “low bioavailability” -- the molecule quickly loses its anti-cancer attributes when ingested, Shibata says. With the aim of improving the therapeutic potential of curcumin, Shibata and his colleagues synthesized and tested 90 variations of the molecule’s structure. Two, GO-Y030 and GO-Y031, proved to be more potent and bioavailable, than natural curcumin.

“Our new analogues have enhanced growth suppressive abilities against colorectal cancer cell lines, up to 30 times greater than natural curcumin,” said Shibata, associate professor in the Department of Clinical Oncology at the Institute of Development, Aging and Cancer at Tohoku University. “In a mouse model for colorectal cancer, mice fed with five milligrams of GO-Y030 or GO-Y031 fared 42 and 51 percent better, respectively, than did mice in the control group.” In 2006, the researchers published basic safety and structural data for GO-Y030 and GO-Y031 in Molecular Cancer Therapeutics, a publication of the American Association for Cancer Research, and they continue to study the mechanisms behind the molecules’ apparent potencies. In its natural form, the curcumin molecule is composed of two ring structures linked by a chain of seven carbon atoms. The active ring structures of GO-Y030 and GO-Y031, however, are linked by a shorter, five-carbon chain, which Shibata says might – for reasons still under investigation –account for their enhanced potency.

Like curcumin, the researchers believe the new analogues have clinical potential that extends beyond colorectal cancer. “In addition to colorectal cancer, the â catenin-degrading abilities of these molecules could apply to other forms of cancer, such as gastric cancer,” said Shibata. “Like curcumin, these analogues also down-regulate a number of gene products, such as NF-kappa B, ErbB2, K-ras, that are also implicated in breast, pancreas and lung cancers among other diseases.”

“In addition to their chemopreventative abilities, these molecules might also form the basis of a potent chemotherapy, either alone or in combination with other modes of therapy,” said Shibata.

According to Shibata, the next step for the researchers is to further examine the drug delivery mechanisms, toxicology and pharmacokinetics of these analogues, before extending the research to clinical trials. Their studies were funded by the Japanese Society for the Promotion of Science and the Miyagi Health Service Association.

The mission of the American Association for Cancer Research is to prevent and cure cancer. Founded in 1907, AACR is the world's oldest and largest professional organization dedicated to advancing cancer research. The membership includes nearly 26,000 basic, translational, and clinical researchers; health care professionals; and cancer survivors and advocates in the United States and more than 70 other countries. AACR marshals the full spectrum of expertise from the cancer community to accelerate progress in the prevention, diagnosis and treatment of cancer through high-quality scientific and educational programs. It funds innovative, meritorious research grants. The AACR Annual Meeting attracts more than 17,000 participants who share the latest discoveries and developments in the field. Special Conferences throughout the year present novel data across a wide variety of topics in cancer research, treatment, and patient care. AACR publishes five major peer-reviewed journals: Cancer Research; Clinical Cancer Research; Molecular Cancer Therapeutics; Molecular Cancer Research; and Cancer Epidemiology, Biomarkers & Prevention. Its most recent publication, CR, is a magazine for cancer survivors, patient advocates, their families, physicians, and scientists. It provides a forum for sharing essential, evidence-based information and perspectives on progress in cancer research, survivorship, and advocacy.

The Agency for Science, Technology and Research, or A*STAR, is Singapore's lead agency for fostering world-class scientific research and talent for a vibrant knowledge-based Singapore. A*STAR actively nurtures public sector research and development in Biomedical Sciences, Physical Sciences and Engineering, with a particular focus on fields essential to Singapore's manufacturing industry and new growth industries. It oversees 14 research institutes and supports extramural research with the universities, hospital research centres and other local and international partners. At the heart of this knowledge intensive work is human capital. Top local and international scientific talent drive knowledge creation at A*STAR research institutes. The Agency also sends scholars for undergraduate, graduate and post-doctoral training in the best universities, a reflection of the high priority A*STAR places on nurturing the next generation of scientific talent.

The Genome Institute of Singapore (GIS) is a member of the Agency for Science, Technology and Research (A*STAR). It is a national initiative with a global vision that seeks to use genomic sciences to improve public health and public prosperity. Established in 2001 as a centre for genomic discovery, the GIS will pursue the integration of technology, genetics and biology towards the goal of individualized medicine. The key research areas at the GIS include Systems Biology, Stem Cell & Developmental Biology, Cancer Biology & Pharmacology, Human Genetics, Infectious Diseases, Genomic Technologies, and Computational & Mathematical Biology. The genomics infrastructure at the GIS is utilized to train new scientific talent, to function as a bridge for academic and industrial research, and to explore scientific questions of high impact.

Staci Vernick Goldberg | EurekAlert!
Further information:
http://www.aacr.org

More articles from Health and Medicine:

nachricht Penn study identifies new malaria parasites in wild bonobos
21.11.2017 | University of Pennsylvania School of Medicine

nachricht NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures
17.11.2017 | National Institute of Standards and Technology (NIST)

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

From Hannover around the world and to the Mars: LZH delivers laser for ExoMars 2020

21.11.2017 | Physics and Astronomy

Borophene shines alone as 2-D plasmonic material

21.11.2017 | Materials Sciences

Penn study identifies new malaria parasites in wild bonobos

21.11.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>