Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


St. Jude finds anti-leukemia drug increases patient fatigue

Finding that dexamethasone increases fatigue in children suggests that altering timing or dosing of this drug could lessen troublesome effect on sleep and increase quality of life for patients and their families

The anti-leukemia drug dexamethasone contributes to a relentless fatigue and poor quality of sleep in children undergoing treatment for acute lymphoblastic leukemia (ALL), according to a new study from St. Jude Children's Research Hospital. The finding suggests that clinicians could improve the quality of life for these children by developing new methods of drug administration that reduce or eliminate these side effects.

The St. Jude team showed that dexamethasone significantly increased patients?fatigue, length of daytime naps, frequency of awakening at night and the amount of restlessness during sleep. The findings also suggest that before initiation of continuation therapy for ALL, health care workers should prepare patients and families to expect an increase in disrupted sleep and fatigue during dexamethasone treatment. Continuation therapy is the long-term treatment that occurs following the initial intensive use of anti-cancer drugs designed to quickly reduce the number of cancer cells.

“Parents and patients have long reported altered behaviors during dexamethasone treatment, but this is the first trial to document that disrupted sleep and fatigue are behavioral indicators of patients?response to the treatment,?said Pamela Hinds, Ph.D., R.N., director of the Division of Nursing Research at St. Jude. Hinds is the first author of this study, which appears in the online version of the journal “Cancer.?

Previous studies had found that dexamethasone was especially effective in the treatment of ALL, but that it could also cause a variety of side effects in children, including fatigue. Therefore, the St. Jude team designed the current study to determine if the direct and consistent link between dexamenthasone and fatigue and disrupted sleep in children was significant and common.

“Before we could begin to revise the way we give dexamethasone to children we had to establish if the drug routinely disrupts the sleep of children, or whether it’s only an occasional problem among specific children,?Hinds said. “We found that it’s a widespread problem across all age groups.?The study included 100 pediatric patients, with an average age of nine years, who were treated at St. Jude, Texas Children’s Cancer Center in Houston and Hospital for Sick Children in Toronto.

Researchers monitored the sleep activity of children during two consecutive five-day periods by having them wear a wristwatch-style device called an actigraph, which senses motion and stores the information on a computer chip. The children did not receive dexamethasone during the first five-day period, but were treated with the drug during the second period. In addition, parents kept a “sleep diary,?in which they recorded their daily perceptions of their child’s sleep and nap patterns during the previous 24-hour period. Children, ages 7 to 12 years, and adolescents, ages 13 to 18, completed surveys, rating how tired they were; and parents filled out surveys about their perception of their child’s fatigue.

“Now that we have demonstrated that dexamethasone is so disruptive of sleep and causes profound fatigue in children with ALL, we will study ways to reduce these troublesome side effects, while still allowing the patients to get full benefit of the treatment,?said Ching-Hon Pui, M.D., chair of the St. Jude Department of Oncology and the paper’s senior author. “This would help us continue to improve the already high quality of care we provide to children with ALL.?

Carrie Strehlau | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht Resolving the mystery of preeclampsia
21.10.2016 | Universitätsklinikum Magdeburg

nachricht New potential cancer treatment using microwaves to target deep tumors
12.10.2016 | University of Texas at Arlington

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>