Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Next-generation biomaterials to help body heal itself

08.02.2002


The next generation of biomaterials will help the body heal itself by prompting cells to repair their own tissues, scientists report today.



Writing in a review in the journal Science, Professors Larry Hench and Julia Polak of Imperial College, London, highlight the potential of `third generation` biomaterials that activate specific cells and genes of the individual they are implanted into.

Pioneering work by the two authors recently led to the discovery of a family of bone formation genes that can be regulated by bioactive materials. This discovery is already being used to create a new generation of biomaterials for regeneration and repair of tissue.


The authors also signal a new era in biomaterials, calling for research emphasis to shift from replacement to regeneration of tissues.

Professor Hench, discoverer of Bioglass (R) and author of a 1980 Science review of the field, said:

"The advantage of the new approach is that the body`s own genes control the tissue repair process. The result is equivalent to natural tissues in that the new structure is living and adaptable to the physiological environment. It is the scientific basis for us to design a new generation of gene-activating biomaterials tailored for specific patients and disease states."

In the last two years a group at Imperial College Tissue Engineering Centre headed by Professor Polak has analysed how human cells behave when they are attached to scaffolds of a specific bioactive material.

They demonstrated that key genes of bone cells involved in bone formation are activated when a bioactive material designed and configured for the purpose of bone formation is brought together with it. At the same time other genes, normally activated when fat or other tissues are formed, were down regulated.

"In the future we may only need to implant the carefully calculated chemical ingredients of the biomaterial, rather than a `finished` biomaterial itself, in order to repair tissue," said Professor Hench.

"By designing these very specific molecular scaffolds for repair of tissues and using minimally invasive surgery to implant them, this technique could have a major clinical application."

"Perhaps of even more importance is the possibility that bioactive stimuli can be used to activate genes in a preventative treatment to maintain the health of tissues as they age," he said.

Their review tracks the development of the field from the 1960s to the present day, in a special edition of the journal on the `Bionic Human.`

In the 1960`s and 1970`s, the first generation of biomaterials was developed for use inside the human body. A key feature of these biomaterials is their biological inertness, which minimises the body`s response to the foreign body. The authors estimate that tens of millions of individuals have had their quality of life enhanced for 5 to 25 years through such implants.

In 1984 a major shift began with a second generation of materials that become activated in a controlled way when implanted in the body. `Bioactive` materials such as glasses, ceramics and composites have since been used in a variety of orthopaedic and dental applications. `Resorbable` biomaterials that are slowly broken down and replaced by regenerating tissues appeared at the same time.

However the authors state that survivability rates of skeletal prostheses and artificial heart valves show that a third to half of prostheses fail within 10-25 years, meaning that many patients require revision surgery.

The article is one of 9 reports on the topic `Bodybuilding: The Bionic Human`, covered in Science this week.


For more information please contact:

Professor Larry Hench
Department of Materials and Imperial College Tissue Engineering Centre
Tel: +44 (0)20 7594 6745
Email: l.hench@ic.ac.uk

Professor Julia Polak
Imperial College Tissue Engineering Centre
Tel: +44 (0)20 8237 2670
Email: julia.polak@ic.ac.uk

Tom Miller
Imperial College Press Office
Tel: +44 (0)20 7594 6704
Mob: +44 (0)7803 886248
Email: t.miller@ic.ac.uk

Tom Miller | alphagalileo

More articles from Health and Medicine:

nachricht FAU researchers demonstrate that an oxygen sensor in the body reduces inflammation
22.02.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

nachricht 'Icebreaker' protein opens genome for t cell development, Penn researchers find
21.02.2018 | University of Pennsylvania School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

The RWI/ISL-Container Throughput Index started off well in 2018

22.02.2018 | Business and Finance

FAU researchers demonstrate that an oxygen sensor in the body reduces inflammation

22.02.2018 | Health and Medicine

Histology in 3D: new staining method enables Nano-CT imaging of tissue samples

22.02.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>