Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Next-generation biomaterials to help body heal itself

08.02.2002


The next generation of biomaterials will help the body heal itself by prompting cells to repair their own tissues, scientists report today.



Writing in a review in the journal Science, Professors Larry Hench and Julia Polak of Imperial College, London, highlight the potential of `third generation` biomaterials that activate specific cells and genes of the individual they are implanted into.

Pioneering work by the two authors recently led to the discovery of a family of bone formation genes that can be regulated by bioactive materials. This discovery is already being used to create a new generation of biomaterials for regeneration and repair of tissue.


The authors also signal a new era in biomaterials, calling for research emphasis to shift from replacement to regeneration of tissues.

Professor Hench, discoverer of Bioglass (R) and author of a 1980 Science review of the field, said:

"The advantage of the new approach is that the body`s own genes control the tissue repair process. The result is equivalent to natural tissues in that the new structure is living and adaptable to the physiological environment. It is the scientific basis for us to design a new generation of gene-activating biomaterials tailored for specific patients and disease states."

In the last two years a group at Imperial College Tissue Engineering Centre headed by Professor Polak has analysed how human cells behave when they are attached to scaffolds of a specific bioactive material.

They demonstrated that key genes of bone cells involved in bone formation are activated when a bioactive material designed and configured for the purpose of bone formation is brought together with it. At the same time other genes, normally activated when fat or other tissues are formed, were down regulated.

"In the future we may only need to implant the carefully calculated chemical ingredients of the biomaterial, rather than a `finished` biomaterial itself, in order to repair tissue," said Professor Hench.

"By designing these very specific molecular scaffolds for repair of tissues and using minimally invasive surgery to implant them, this technique could have a major clinical application."

"Perhaps of even more importance is the possibility that bioactive stimuli can be used to activate genes in a preventative treatment to maintain the health of tissues as they age," he said.

Their review tracks the development of the field from the 1960s to the present day, in a special edition of the journal on the `Bionic Human.`

In the 1960`s and 1970`s, the first generation of biomaterials was developed for use inside the human body. A key feature of these biomaterials is their biological inertness, which minimises the body`s response to the foreign body. The authors estimate that tens of millions of individuals have had their quality of life enhanced for 5 to 25 years through such implants.

In 1984 a major shift began with a second generation of materials that become activated in a controlled way when implanted in the body. `Bioactive` materials such as glasses, ceramics and composites have since been used in a variety of orthopaedic and dental applications. `Resorbable` biomaterials that are slowly broken down and replaced by regenerating tissues appeared at the same time.

However the authors state that survivability rates of skeletal prostheses and artificial heart valves show that a third to half of prostheses fail within 10-25 years, meaning that many patients require revision surgery.

The article is one of 9 reports on the topic `Bodybuilding: The Bionic Human`, covered in Science this week.


For more information please contact:

Professor Larry Hench
Department of Materials and Imperial College Tissue Engineering Centre
Tel: +44 (0)20 7594 6745
Email: l.hench@ic.ac.uk

Professor Julia Polak
Imperial College Tissue Engineering Centre
Tel: +44 (0)20 8237 2670
Email: julia.polak@ic.ac.uk

Tom Miller
Imperial College Press Office
Tel: +44 (0)20 7594 6704
Mob: +44 (0)7803 886248
Email: t.miller@ic.ac.uk

Tom Miller | alphagalileo

More articles from Health and Medicine:

nachricht PET imaging tracks Zika virus infection, disease progression in mouse model
20.09.2017 | US Army Medical Research Institute of Infectious Diseases

nachricht 'Exciting' discovery on path to develop new type of vaccine to treat global viruses
18.09.2017 | University of Southampton

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Molecular Force Sensors

20.09.2017 | Life Sciences

Producing electricity during flight

20.09.2017 | Power and Electrical Engineering

Tiny lasers from a gallery of whispers

20.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>