Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Pitt reports re-opening of carotid arteries in stroke has high success rate with stenting


University of Pittsburgh researchers report a high level of effectiveness in re-opening completely blocked internal carotid arteries (ICA) as late as two to three days after acute stroke symptoms by using stents. The study at the University of Pittsburgh School of Medicine’s Department of Neurology and University of Pittsburgh Medical Center’s (UPMC) Stroke Institute, is in the November issue of Stroke, a peer-reviewed publication of the American Heart Association.

"This report breaks new ground in that it contradicts the conventional wisdom that a completely blocked or occluded carotid cannot be opened," said the study’s lead author, Tudor Jovin, M.D., assistant professor of neurology and neurosurgery at Pitt’s School of Medicine, and co-director of the Center for Endovascular Therapy at UPMC.

Dr. Jovin’s team, which consisted of members of the UPMC Stroke Institute, retrospectively studied 25 patients with acute carotid occlusion who underwent angiography with the intent to revascularize the occlusion from January 2002 to March 2005.

Researchers concluded that recanalization, or re-opening of the artery, was successful in 23 of the 25 patients, and that the procedure was done safely.

"The main finding of the report was that endovascular revascularization of occluded ICA in the setting of acute or subacute ischemic stroke carries a high-revascularization rate and is safe in selected patients," Dr. Jovin reported.

"Management of stroke because of acute internal carotid artery occlusion continues to represent a challenge because it may result in significant disability in 40 percent and death in 20 percent of cases," Dr. Jovin said. "Our results are significant because they offer an opportunity for patients who may need more aggressive treatment. Future prospective studies are necessary to determine which patients are most likely to benefit from this form of therapy."

Dr. Jovin added that early restoration of flow in the occluded ICA may improve the symptoms of acute stroke, prevent worsening and reduce long-term stroke recurrence risk.

The study also demonstrated that ideal candidates for endovascular ICA revascularization would be patients with a small area of tissue irreversibly compromised and a large area of tissue that is viable but threatened to undergo infarction.

Michael B. Horowitz, M.D., associate professor of neurosurgery and radiology and director of the UPMC Center for Neuroendovascular Therapy, also participated in the study along with Rishi Gupta, M.D., fellow, department of neurology; Ken Uchino, M.D., assistant professor of neurology; Lawrence R. Wechsler, M.D., professor of neurology and director, UPMC Stroke Institute; Maxim D. Hammer, M.D., assistant professor of neurology, all from the University of Pittsburgh School of Medicine; and Charles A. Jungreis, M.D., professor of radiology and chair of radiology Temple University Hospital.

According to the American Heart Association, stroke is the third leading cause of death in the United States and is a primary cause of serious, long-term disability in adults. On average, someone in the U.S. suffers a stroke every 53 seconds, with 700,000 Americans experiencing a new or recurring stroke each year and approximately 160,000 Americans dying every year from stroke.

Alan Aldinger | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht Resolving the mystery of preeclampsia
21.10.2016 | Universitätsklinikum Magdeburg

nachricht New potential cancer treatment using microwaves to target deep tumors
12.10.2016 | University of Texas at Arlington

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>