Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New treatment rivals chemotherapy for lymphoma

03.02.2005


95 percent of patients respond to radioactive antibody treatment

A new form of treatment for lymphoma that takes a fraction of the time of traditional chemotherapy with fewer side effects caused tumors to shrink in 95 percent of patients, a new study by researchers at the University of Michigan Comprehensive Cancer Center found.

Patients with advanced-stage follicular lymphoma – a cancer generally considered incurable – who had not been previously treated with any other form of therapy received a single course of treatment with the Bexxar therapeutic regimen, a radioactive antibody injected into the bloodstream that targets and kills cancer cells. Of the 76 patients enrolled in the study, 95 percent responded to the treatment and 75 percent had a complete response, meaning no evidence of cancer remained. More than three-quarters of patients with a complete remission were disease-free after five years.



Results of the study appear in the Feb. 3 New England Journal of Medicine.

"The results of this treatment, which essentially takes only one week to complete, rival any kind of treatment that’s been used for follicular lymphoma, including chemotherapy regimens that take months to complete. It’s very well-tolerated by patients and we saw complete remission in the majority of patients lasting for years," says lead study author Mark Kaminski, M.D., director of the Leukemia/Lymphoma Program and the Multidisciplinary Lymphoma Clinic at the U-M Comprehensive Cancer Center.

Kaminski and his colleague Richard Wahl (formerly at U-M and now at Johns Hopkins University) developed the Bexxar regimen, which received approval from the U.S. Food and Drug Administration in June 2003 to treat follicular non-Hodgkin’s lymphoma after other treatments have failed. The newly published research involves Bexxar as a first-line treatment for this disease.

Non-Hodgkin’s lymphoma, the nation’s sixth leading cause of cancer death, is a cancer of the lymph system, which is part of the immune system. Lymphoma spreads easily through the lymph system and the bloodstream and consequently tends to be widespread when it is diagnosed. Traditional treatment often involves intensive chemotherapy, or a combination of chemotherapy and the monoclonal antibody rituximab. These treatments are usually given every three weeks over a span of up to six months and can cause many unpleasant side effects, including nausea, hair loss and infections.

Follicular lymphoma is the second most common type of non-Hodgkin’s lymphoma and is not considered to be curable using these traditional treatments; even after patients initially have a response to treatment, the disease almost always comes back and becomes more difficult to treat.

Bexxar, whose chemical name is tositumomab and iodine I 131 tositumomab, combines an antibody that seeks out cancer cells, and a radioactive form of the element iodine. When injected, it travels like a guided missile through the bloodstream to bind to a protein found on the surface of the cancerous cells. The radiation zaps these malignant cells with minimal exposure to normal tissues.

With the Bexxar therapeutic regimen, a patient receives an injected test dose of radioactive Bexxar to determine how that patient’s body processes the tagged antibody. Nuclear medicine scans are used to assess how quickly Bexxar reaches the tumor and how quickly the radiation disappears from the patient’s body. One to two weeks after that initial dose, the patient then receives a custom-tailored therapeutic dose, and therapy is considered complete. The most common side effect is a temporary lowering of blood counts several weeks after the treatment. There is no hair loss and nausea is rare.

Results from this study are even more promising than results using Bexxar after other therapies have failed. In those studies, 70 percent of patients responded to Bexxar and 20 percent to 30 percent saw a complete remission. Bexxar is marketed in the United States by GlaxoSmithKline.

"Given how much better this treatment worked as first-line therapy in our study, moving this treatment up earlier in the course of a patient’s illness should be strongly considered instead of using it as a last resort or not at all. These results support the notion that there’s a real possibility of putting chemotherapy on the back burner for this disease," says Kaminski, a professor of internal medicine at the U-M Medical School. "New studies can now be designed to begin to test this possibility," he adds.

In addition to Kaminski, U-M study authors are Melissa Tuck, research associate for Hematology/Oncology; Judith Estes, M.S.N., N.P., nurse practitioner in the lymphoma clinic; Charles W. Ross, M.D., associate professor of Pathology; Kenneth Zasadny, Ph.D., Nuclear Medicine; Denise Regan and Paul Kison, nuclear medicine technicians; Susan Fisher, project associate in Radiology. Other authors are Stewart Kroll from Corixa Corp.; Arne Kolstad, M.D., Ph.D., from the Norwegian Radium Hospital, Oslo; and Richard L. Wahl, M.D., from Johns Hopkins University School of Medicine.

Nicole Fawcett | EurekAlert!
Further information:
http://www.umich.edu
http://www.cancer.med.umich.edu/learn/lymphomainfo.htm

More articles from Health and Medicine:

nachricht How cancer metastasis happens: Researchers reveal a key mechanism
19.01.2018 | Weill Cornell Medicine

nachricht Researchers identify new way to unmask melanoma cells to the immune system
17.01.2018 | Duke University Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>