Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New treatment rivals chemotherapy for lymphoma

03.02.2005


95 percent of patients respond to radioactive antibody treatment

A new form of treatment for lymphoma that takes a fraction of the time of traditional chemotherapy with fewer side effects caused tumors to shrink in 95 percent of patients, a new study by researchers at the University of Michigan Comprehensive Cancer Center found.

Patients with advanced-stage follicular lymphoma – a cancer generally considered incurable – who had not been previously treated with any other form of therapy received a single course of treatment with the Bexxar therapeutic regimen, a radioactive antibody injected into the bloodstream that targets and kills cancer cells. Of the 76 patients enrolled in the study, 95 percent responded to the treatment and 75 percent had a complete response, meaning no evidence of cancer remained. More than three-quarters of patients with a complete remission were disease-free after five years.



Results of the study appear in the Feb. 3 New England Journal of Medicine.

"The results of this treatment, which essentially takes only one week to complete, rival any kind of treatment that’s been used for follicular lymphoma, including chemotherapy regimens that take months to complete. It’s very well-tolerated by patients and we saw complete remission in the majority of patients lasting for years," says lead study author Mark Kaminski, M.D., director of the Leukemia/Lymphoma Program and the Multidisciplinary Lymphoma Clinic at the U-M Comprehensive Cancer Center.

Kaminski and his colleague Richard Wahl (formerly at U-M and now at Johns Hopkins University) developed the Bexxar regimen, which received approval from the U.S. Food and Drug Administration in June 2003 to treat follicular non-Hodgkin’s lymphoma after other treatments have failed. The newly published research involves Bexxar as a first-line treatment for this disease.

Non-Hodgkin’s lymphoma, the nation’s sixth leading cause of cancer death, is a cancer of the lymph system, which is part of the immune system. Lymphoma spreads easily through the lymph system and the bloodstream and consequently tends to be widespread when it is diagnosed. Traditional treatment often involves intensive chemotherapy, or a combination of chemotherapy and the monoclonal antibody rituximab. These treatments are usually given every three weeks over a span of up to six months and can cause many unpleasant side effects, including nausea, hair loss and infections.

Follicular lymphoma is the second most common type of non-Hodgkin’s lymphoma and is not considered to be curable using these traditional treatments; even after patients initially have a response to treatment, the disease almost always comes back and becomes more difficult to treat.

Bexxar, whose chemical name is tositumomab and iodine I 131 tositumomab, combines an antibody that seeks out cancer cells, and a radioactive form of the element iodine. When injected, it travels like a guided missile through the bloodstream to bind to a protein found on the surface of the cancerous cells. The radiation zaps these malignant cells with minimal exposure to normal tissues.

With the Bexxar therapeutic regimen, a patient receives an injected test dose of radioactive Bexxar to determine how that patient’s body processes the tagged antibody. Nuclear medicine scans are used to assess how quickly Bexxar reaches the tumor and how quickly the radiation disappears from the patient’s body. One to two weeks after that initial dose, the patient then receives a custom-tailored therapeutic dose, and therapy is considered complete. The most common side effect is a temporary lowering of blood counts several weeks after the treatment. There is no hair loss and nausea is rare.

Results from this study are even more promising than results using Bexxar after other therapies have failed. In those studies, 70 percent of patients responded to Bexxar and 20 percent to 30 percent saw a complete remission. Bexxar is marketed in the United States by GlaxoSmithKline.

"Given how much better this treatment worked as first-line therapy in our study, moving this treatment up earlier in the course of a patient’s illness should be strongly considered instead of using it as a last resort or not at all. These results support the notion that there’s a real possibility of putting chemotherapy on the back burner for this disease," says Kaminski, a professor of internal medicine at the U-M Medical School. "New studies can now be designed to begin to test this possibility," he adds.

In addition to Kaminski, U-M study authors are Melissa Tuck, research associate for Hematology/Oncology; Judith Estes, M.S.N., N.P., nurse practitioner in the lymphoma clinic; Charles W. Ross, M.D., associate professor of Pathology; Kenneth Zasadny, Ph.D., Nuclear Medicine; Denise Regan and Paul Kison, nuclear medicine technicians; Susan Fisher, project associate in Radiology. Other authors are Stewart Kroll from Corixa Corp.; Arne Kolstad, M.D., Ph.D., from the Norwegian Radium Hospital, Oslo; and Richard L. Wahl, M.D., from Johns Hopkins University School of Medicine.

Nicole Fawcett | EurekAlert!
Further information:
http://www.umich.edu
http://www.cancer.med.umich.edu/learn/lymphomainfo.htm

More articles from Health and Medicine:

nachricht Second cause of hidden hearing loss identified
20.02.2017 | Michigan Medicine - University of Michigan

nachricht Prospect for more effective treatment of nerve pain
20.02.2017 | Universität Zürich

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>