Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


FSU scientist links iron imbalance to Parkinson’s disease


You might want to toss those iron-fortified vitamins, because absent a diagnosed deficiency too much of a good thing can be bad.

Dietary iron imbalances either way spell trouble for healthy cells, triggering a chain of cellular events in the brain that increases the odds of developing Parkinson’s disease, a degenerative condition affecting movement and balance in more than 1 million Americans each year. But excessive iron levels are worse -- much worse.

The findings from a study by Florida State University scientist Cathy Levenson are described in "The Role of Dietary Iron Restrictions in a Mouse Model of Parkinson’s Disease" and will appear in an upcoming edition of Experimental Neurology. Levenson is an associate professor of nutrition, food and exercise sciences in FSU’s College of Human Sciences and a faculty member in both the Program in Neuroscience and graduate program in molecular biophysics. "We define our work here at the cellular level," said Levenson from her laboratory at FSU’s Biomedical Research Facility. "Our primary research objective is to better understand how trace metal imbalances, which are associated with neuropsychiatric and neurodegenerative diseases, affect the molecular mechanisms that regulate gene expression."

Levenson performed the mouse model portion of the study in collaboration with Mark Mattson, Laboratory of Neurosciences chief at the National Institute on Aging in Bethesda, Md. Mice were fed varying amounts of iron to determine levels that precipitated onset or hastened the progression of Parkinson’s-like symptoms such as tremors and balance problems, both in healthy rodents and where risk factors existed. High levels of iron caused Parkinson’s-like symptoms even in healthy mice without apparent risk factors for the illness, while accelerating the decline and death of those already diagnosed with the disease.

In contrast, low levels of iron delayed onset of Parkinson’s in mice with risk factors and slowed progress of the disease in those already infected. But the low iron news was mixed. Levenson also discovered that iron deficiencies in healthy risk-free rodents led to decreasing levels of dopamine, the neurotransmitter critical to relaying brain messages that control both balance and movement. Dopamine levels fall as the brain cells or "neurons" responsible for transporting it begin to "commit suicide" at higher-than normal-rates, triggering the chain of events that eventually precipitates the onset of Parkinson’s disease.

The study confirms that both iron deficiency and toxicity are linked to the specific genes and neuronal suicide that lead to dopamine shortages responsible for development of Parkinson’s. Yet while low levels of iron then delay the onset of the disease once the neurological stage is set or slow the degenerative progress, iron toxicity both precipitates Parkinson’s symptoms and hastens decline and death in existing victims.

Until further studies determine optimal levels of the essential nutrient, Levenson advises health-conscious consumers without doctors’ orders to forego the mineral in tablet form in favor of natural dietary sources like red meats, dried fruits, dark leafy greens, tofu, cooked dried beans or wheat germ. "I’d be nervous about just handing someone iron supplements and saying ’have at it," she said. "Self-medicating may have unintended consequences."

Cathy Levenson | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht Advanced analysis of brain structure shape may track progression to Alzheimer's disease
26.10.2016 | Massachusetts General Hospital

nachricht Indian roadside refuse fires produce toxic rainbow
26.10.2016 | Duke University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Prototype device for measuring graphene-based electromagnetic radiation created

28.10.2016 | Power and Electrical Engineering

Gamma ray camera offers new view on ultra-high energy electrons in plasma

28.10.2016 | Physics and Astronomy

When fat cells change their colour

28.10.2016 | Life Sciences

More VideoLinks >>>