Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

FSU scientist links iron imbalance to Parkinson’s disease

14.10.2004


You might want to toss those iron-fortified vitamins, because absent a diagnosed deficiency too much of a good thing can be bad.



Dietary iron imbalances either way spell trouble for healthy cells, triggering a chain of cellular events in the brain that increases the odds of developing Parkinson’s disease, a degenerative condition affecting movement and balance in more than 1 million Americans each year. But excessive iron levels are worse -- much worse.

The findings from a study by Florida State University scientist Cathy Levenson are described in "The Role of Dietary Iron Restrictions in a Mouse Model of Parkinson’s Disease" and will appear in an upcoming edition of Experimental Neurology. Levenson is an associate professor of nutrition, food and exercise sciences in FSU’s College of Human Sciences and a faculty member in both the Program in Neuroscience and graduate program in molecular biophysics. "We define our work here at the cellular level," said Levenson from her laboratory at FSU’s Biomedical Research Facility. "Our primary research objective is to better understand how trace metal imbalances, which are associated with neuropsychiatric and neurodegenerative diseases, affect the molecular mechanisms that regulate gene expression."


Levenson performed the mouse model portion of the study in collaboration with Mark Mattson, Laboratory of Neurosciences chief at the National Institute on Aging in Bethesda, Md. Mice were fed varying amounts of iron to determine levels that precipitated onset or hastened the progression of Parkinson’s-like symptoms such as tremors and balance problems, both in healthy rodents and where risk factors existed. High levels of iron caused Parkinson’s-like symptoms even in healthy mice without apparent risk factors for the illness, while accelerating the decline and death of those already diagnosed with the disease.

In contrast, low levels of iron delayed onset of Parkinson’s in mice with risk factors and slowed progress of the disease in those already infected. But the low iron news was mixed. Levenson also discovered that iron deficiencies in healthy risk-free rodents led to decreasing levels of dopamine, the neurotransmitter critical to relaying brain messages that control both balance and movement. Dopamine levels fall as the brain cells or "neurons" responsible for transporting it begin to "commit suicide" at higher-than normal-rates, triggering the chain of events that eventually precipitates the onset of Parkinson’s disease.

The study confirms that both iron deficiency and toxicity are linked to the specific genes and neuronal suicide that lead to dopamine shortages responsible for development of Parkinson’s. Yet while low levels of iron then delay the onset of the disease once the neurological stage is set or slow the degenerative progress, iron toxicity both precipitates Parkinson’s symptoms and hastens decline and death in existing victims.

Until further studies determine optimal levels of the essential nutrient, Levenson advises health-conscious consumers without doctors’ orders to forego the mineral in tablet form in favor of natural dietary sources like red meats, dried fruits, dark leafy greens, tofu, cooked dried beans or wheat germ. "I’d be nervous about just handing someone iron supplements and saying ’have at it," she said. "Self-medicating may have unintended consequences."

Cathy Levenson | EurekAlert!
Further information:
http://www.fsu.edu

More articles from Health and Medicine:

nachricht What does congenital Zika syndrome look like?
24.03.2017 | University of California - San Diego

nachricht Vanishing capillaries
23.03.2017 | Technische Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

NASA examines Peru's deadly rainfall

24.03.2017 | Earth Sciences

What does congenital Zika syndrome look like?

24.03.2017 | Health and Medicine

Steep rise of the Bernese Alps

24.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>