Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

William Sly: New Hope for Sly Syndrome Research

11.08.2004


Findings by a Saint Louis University research team led by the scientist who discovered Sly Syndrome 32 years ago point to a new direction for research into the rare genetic disorder that can cause bone deformities, vision and hearing loss, mental retardation and death in children.



The research is published in the Proceedings of the National Academy of Sciences Online Early Edition the week of Aug. 9.

“The importance of this research goes far beyond this rare disorder,” said William Sly, M.D., chairman of the department of biochemistry and molecular biology at Saint Louis University School of Medicine. “It could potentially provide access to the brain for enzyme therapy in other similar diseases, most of which are more common than Sly Syndrome.”


Sly Syndrome occurs in less than one in 250,000 births and is a progressive disorder that ranges in severity to extremely severe – resulting in death – to mild. It is caused by the deficiency of an enzyme called beta-glucuronidase, which leads to an accumulation of protein-sugar molecules known as mucopolysaccharides in many of the body’s organs, including the brain.

Enzyme replacement therapy – injecting the missing enzyme into the body – holds promise in treating physical problems caused by mucopolysaccharide accumulation in parts of the body other than the brain. The blood-brain barrier prevents the enzyme from reaching the brain.

But Saint Louis University researchers examining an animal model of Sly Syndrome previously had found that enzyme replacement therapy was effective in treating the brain if given while the mice were very young.

“Until now, the reason why the central nervous system of neonates, but not adults, responds to enzyme replacement therapy was unknown,” said William A. Banks, M.D., an author of the article and a professor of geriatrics in the department of internal medicine and professor of pharmacological science at Saint Louis University School of Medicine.

The research discovered how injections of the missing enzyme to treat Sly Syndrome reached the brains of baby mice, but not of brains of adults.

“Here we report that the blood-brain barrier of neonatal mice possesses a transport system for the enzyme that is progressively lost with aging. In fact by adulthood, the blood-brain barrier has totally lost this transport capacity.”

Until this discovery, researchers had assumed that the only way to get enzyme into the brain was to build some kind of delivery system which could cross the blood-brain barrier.

“But this research shows that the blood-brain barrier already has its own delivery system. Unfortunately, it shuts down when you reach adulthood,” Banks said.
The blood-brain barrier continues to make the delivery molecule, which is the mannose-6 phosphate receptor (M6PR), but does not place it on the surface of the blood-brain barrier where it can transport enzyme. Instead the M6PR stays inside the blood-brain barrier cell.

“We’ve got to convince the blood-brain barrier to turn the delivery system back on.”

The answer to switching the delivery system back on, Banks speculates, lies in the area of protein translocation – the process that cells use to decide where they put the proteins they make.

“It becomes a molecular biology question. Really, it’s a question of how does the cell decide which proteins it keeps inside and which it translocates to its surface. The whole question had been posed as a problem of inventing a blood-brain barrier delivery system,” said Banks, who also is a staff physician at Veterans Affairs Medical Center in St. Louis.

“Now we have a new haystack to look in. Instead of learning how to build a truck to deliver the enzyme across the blood-brain barrier, we need to figure out how to get the stop light to switch back to green. In other words, how do we get the blood-brain barrier’s truck to start delivery service again.”

Added Sly, “Most lysosomal storage diseases are much more common than Sly Syndrome. And most of these also affect the central nervous system and could benefit immensely by a discovery that provides the means to deliver an enzyme across the blood-brain barrier after the newborn period.”

| newswise
Further information:
http://www.slu.edu

More articles from Health and Medicine:

nachricht 'Exciting' discovery on path to develop new type of vaccine to treat global viruses
18.09.2017 | University of Southampton

nachricht A new approach to high insulin levels
18.09.2017 | Schweizerischer Nationalfonds SNF

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

Im Focus: Artificial Enzymes for Hydrogen Conversion

Scientists from the MPI for Chemical Energy Conversion report in the first issue of the new journal JOULE.

Cell Press has just released the first issue of Joule, a new journal dedicated to sustainable energy research. In this issue James Birrell, Olaf Rüdiger,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

New quantum phenomena in graphene superlattices

19.09.2017 | Physics and Astronomy

A simple additive to improve film quality

19.09.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>