Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Depression traced to overactive brain circuit

05.08.2004


Areas that show over-activity following tryptophan depletion in depression patients in remission — and thought to reflect a trait dysfunction — include emotion regulating circuitry involving the anterior cingulate, thalamus, ventral striatum and orbitofrontal cortex.


A brain imaging study by the NIH’s National Institute of Mental Health (NIMH) has found that an emotion-regulating brain circuit is overactive in people prone to depression – even when they are not depressed. Researchers discovered the abnormality in brains of those whose depressions relapsed when a key brain chemical messenger was experimentally reduced. Even when in remission, most subjects with a history of mood disorder experienced a temporary recurrence of symptoms when their brains were experimentally sapped of tryptophan, the chemical precursor of serotonin, the neurotransmitter that is boosted by antidepressants.

Neither a placebo procedure in patients nor tryptophan depletion in healthy volunteers triggered the mood and brain activity changes. Brain scans revealed that a key emotion-processing circuit was overactive only in patients in remission – whether or not they had re-experienced symptoms – and not in controls. Since the abnormal activity did not reflect mood state, the finding suggests that tryptophan depletion unmasks an inborn trait associated with depression.

Alexander Neumeister, M.D., Dennis Charney, M.D., Wayne Drevets, M.D., NIMH Mood and Anxiety Disorders Program, and colleagues, report on their positron emission tomography (PET) scan study in the August 2004 Archives of General Psychiatry.



The NIMH researchers and others had previously shown that omitting tryptophan from a cocktail of several other essential amino acids washes out the precursor chemical from the blood and brain, depleting serotonin and often triggering symptoms in people with a history of depression – and even in healthy people from depression-prone families. This added to evidence that a genetic predisposition that renders some people vulnerable to inadequate serotonin activity may be at the root of the mood disorder.

The researchers scanned subjects after their blood tryptophan levels were reduced by about three-fourths, using a radioactive tracer (a form of glucose, the brain’s fuel) which reveals where the brain is active during a particular experimental condition.

They randomly gave 27 unmedicated depressed patients-in-remission and 19 controls either pills containing seven essential amino acids, such as lysine and valine, or identical-looking placebo pills. Subjects received either the active pills or placebos in repeated trials over several days in a blind, crossover design.

Sixteen (59 percent) of the patients experienced a transient return of symptoms under tryptophan depletion; their mood lifted to normal by the next day. Compared to controls, the patients showed increased brain activity in a circuit coursing through the front and center of the brain (orbitofrontal cortex, thalamus, anterior cingulate, and ventral striatum) – areas involved in regulating emotions and motivation that have been implicated in previous studies of depression. Whereas previous studies interpreted the circuit activation as a transient, mood-dependent phenomenon, the new evidence suggests that circuit over-activation is likely an underlying vulnerability trait, say the researchers.

Because of its ability to unmask what appears to be a trait marker for major depressive disorder, the researchers suggest that tryptophan depletion may be a useful tool for studying the genetic basis of depression.

"Since brain function appears to be disregulated even when patients are in remission, they need to continue long-term treatment beyond the symptomatic phase of their illness," noted Neumeister, who recently moved to the Yale University psychiatry department.

Jules Asher | EurekAlert!
Further information:
http://www.nih.gov

More articles from Health and Medicine:

nachricht Laser activated gold pyramids could deliver drugs, DNA into cells without harm
24.03.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

nachricht What does congenital Zika syndrome look like?
24.03.2017 | University of California - San Diego

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>