Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Depression traced to overactive brain circuit

05.08.2004


Areas that show over-activity following tryptophan depletion in depression patients in remission — and thought to reflect a trait dysfunction — include emotion regulating circuitry involving the anterior cingulate, thalamus, ventral striatum and orbitofrontal cortex.


A brain imaging study by the NIH’s National Institute of Mental Health (NIMH) has found that an emotion-regulating brain circuit is overactive in people prone to depression – even when they are not depressed. Researchers discovered the abnormality in brains of those whose depressions relapsed when a key brain chemical messenger was experimentally reduced. Even when in remission, most subjects with a history of mood disorder experienced a temporary recurrence of symptoms when their brains were experimentally sapped of tryptophan, the chemical precursor of serotonin, the neurotransmitter that is boosted by antidepressants.

Neither a placebo procedure in patients nor tryptophan depletion in healthy volunteers triggered the mood and brain activity changes. Brain scans revealed that a key emotion-processing circuit was overactive only in patients in remission – whether or not they had re-experienced symptoms – and not in controls. Since the abnormal activity did not reflect mood state, the finding suggests that tryptophan depletion unmasks an inborn trait associated with depression.

Alexander Neumeister, M.D., Dennis Charney, M.D., Wayne Drevets, M.D., NIMH Mood and Anxiety Disorders Program, and colleagues, report on their positron emission tomography (PET) scan study in the August 2004 Archives of General Psychiatry.



The NIMH researchers and others had previously shown that omitting tryptophan from a cocktail of several other essential amino acids washes out the precursor chemical from the blood and brain, depleting serotonin and often triggering symptoms in people with a history of depression – and even in healthy people from depression-prone families. This added to evidence that a genetic predisposition that renders some people vulnerable to inadequate serotonin activity may be at the root of the mood disorder.

The researchers scanned subjects after their blood tryptophan levels were reduced by about three-fourths, using a radioactive tracer (a form of glucose, the brain’s fuel) which reveals where the brain is active during a particular experimental condition.

They randomly gave 27 unmedicated depressed patients-in-remission and 19 controls either pills containing seven essential amino acids, such as lysine and valine, or identical-looking placebo pills. Subjects received either the active pills or placebos in repeated trials over several days in a blind, crossover design.

Sixteen (59 percent) of the patients experienced a transient return of symptoms under tryptophan depletion; their mood lifted to normal by the next day. Compared to controls, the patients showed increased brain activity in a circuit coursing through the front and center of the brain (orbitofrontal cortex, thalamus, anterior cingulate, and ventral striatum) – areas involved in regulating emotions and motivation that have been implicated in previous studies of depression. Whereas previous studies interpreted the circuit activation as a transient, mood-dependent phenomenon, the new evidence suggests that circuit over-activation is likely an underlying vulnerability trait, say the researchers.

Because of its ability to unmask what appears to be a trait marker for major depressive disorder, the researchers suggest that tryptophan depletion may be a useful tool for studying the genetic basis of depression.

"Since brain function appears to be disregulated even when patients are in remission, they need to continue long-term treatment beyond the symptomatic phase of their illness," noted Neumeister, who recently moved to the Yale University psychiatry department.

Jules Asher | EurekAlert!
Further information:
http://www.nih.gov

More articles from Health and Medicine:

nachricht Chances to treat childhood dementia
24.07.2017 | Julius-Maximilians-Universität Würzburg

nachricht World first: Massive thrombosis removed during early pregnancy
20.07.2017 | Universitätsspital Bern

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

Ultrathin device harvests electricity from human motion

24.07.2017 | Power and Electrical Engineering

Scientists announce the quest for high-index materials

24.07.2017 | Materials Sciences

ADIR Project: Lasers Recover Valuable Materials

24.07.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>