Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New technique in permanent bradytherapy for the treatment of lung cancer


The University Hospital at Navarre University has developed a system for the percutaneous implantation of palladium 103 seeds, a new technique in permanent bradytherapy for the treatment of lung cancer. Recently, the fourth experiment was carried out and the results remitted to the scientific magazine, "Bradytherapy", for its publication. To date there has been no description in world scientific literature of any case using this therapeutic procedure.

The Clínica Universitaria has hosted the only cases of bradytherapy using palladium implantation although, in the literature, there exist two articles on the treatment of 8 patients with iodine 125, a radioisotope especially suited to treatment of prostate cancer. In this case it was decided to opt for palladium 103 given that theoretically it adapts better to rapid and aggressive growth lesions such as the majority of primary lung tumours – although this affirmation is not backed up by clinical data. Apart from this, the isotope having a shorter half-life, the radiological protection measures are reduced.

Bradytherapy is a radical radiation technique which is undertaken jointly by the Radiology and Oncology Departments at the University Hospital. It involves the percutaneous implantation of radioactive seeds by means of vectors that are placed inside the tumour. The procedure is carried out under a general anaesthetic with the patient lying on their back. First, the radiologist selects the target area and then the vectors are introduced with the point guided by CAT (computer-controlled axial tomography); in this way the structures through which they pass can be seen in practically real time. Once it is confirmed that the vectors are correctly placed into position, the radioactive load is impanted.


Bradytherapy with palladium 103 is suitable for those persons with small lesions which, because they are deemed medically unsuitable (because of age, accompanying illnesses, limited pulmonary capacity, etc.), cannot be subjected to open surgery involving the resection of lung tissue. They are very select, high-risk patients who have tumours accessible at the point of puncture by an external route. Until now, the only alternative therapy available to these patients has been external radiation. Nevertheless, this treatment has the drawback of lasting possibly weeks, whereas Bradytherapy is carried out in just one day.

The results obtained with this technique are very satisfactory although not definitive, given the short period of monitoring. Apart from these data, in the opinion of Dr. Martínez-Monge, Bradytherapy has demonstrated its success as a therapeutic option for this group of patients who cannot undergo surgery.

Given that the implantation of palladium 103 is carried out in a percutaneous manner, this technique provides the advantage of a rapid recovery without pain. Moreover, the only two possible complications (pneumothorax, i.e. entry of air into the thoracic cavity and the risk of bleeding) are verified in situ, which allows a rapid response. In any case, none of the patients treated with this procedure has shown these complications nor have others been observed.

Garazi Andonegi | Basque Research
Further information:

More articles from Health and Medicine:

nachricht Resolving the mystery of preeclampsia
21.10.2016 | Universitätsklinikum Magdeburg

nachricht New potential cancer treatment using microwaves to target deep tumors
12.10.2016 | University of Texas at Arlington

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>