Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New technique in permanent bradytherapy for the treatment of lung cancer

09.07.2004


The University Hospital at Navarre University has developed a system for the percutaneous implantation of palladium 103 seeds, a new technique in permanent bradytherapy for the treatment of lung cancer. Recently, the fourth experiment was carried out and the results remitted to the scientific magazine, "Bradytherapy", for its publication. To date there has been no description in world scientific literature of any case using this therapeutic procedure.



The Clínica Universitaria has hosted the only cases of bradytherapy using palladium implantation although, in the literature, there exist two articles on the treatment of 8 patients with iodine 125, a radioisotope especially suited to treatment of prostate cancer. In this case it was decided to opt for palladium 103 given that theoretically it adapts better to rapid and aggressive growth lesions such as the majority of primary lung tumours – although this affirmation is not backed up by clinical data. Apart from this, the isotope having a shorter half-life, the radiological protection measures are reduced.

Bradytherapy is a radical radiation technique which is undertaken jointly by the Radiology and Oncology Departments at the University Hospital. It involves the percutaneous implantation of radioactive seeds by means of vectors that are placed inside the tumour. The procedure is carried out under a general anaesthetic with the patient lying on their back. First, the radiologist selects the target area and then the vectors are introduced with the point guided by CAT (computer-controlled axial tomography); in this way the structures through which they pass can be seen in practically real time. Once it is confirmed that the vectors are correctly placed into position, the radioactive load is impanted.


Suitability

Bradytherapy with palladium 103 is suitable for those persons with small lesions which, because they are deemed medically unsuitable (because of age, accompanying illnesses, limited pulmonary capacity, etc.), cannot be subjected to open surgery involving the resection of lung tissue. They are very select, high-risk patients who have tumours accessible at the point of puncture by an external route. Until now, the only alternative therapy available to these patients has been external radiation. Nevertheless, this treatment has the drawback of lasting possibly weeks, whereas Bradytherapy is carried out in just one day.

The results obtained with this technique are very satisfactory although not definitive, given the short period of monitoring. Apart from these data, in the opinion of Dr. Martínez-Monge, Bradytherapy has demonstrated its success as a therapeutic option for this group of patients who cannot undergo surgery.

Given that the implantation of palladium 103 is carried out in a percutaneous manner, this technique provides the advantage of a rapid recovery without pain. Moreover, the only two possible complications (pneumothorax, i.e. entry of air into the thoracic cavity and the risk of bleeding) are verified in situ, which allows a rapid response. In any case, none of the patients treated with this procedure has shown these complications nor have others been observed.

Garazi Andonegi | Basque Research
Further information:
http://www.unav.es

More articles from Health and Medicine:

nachricht New vaccine production could improve flu shot accuracy
25.07.2017 | Duke University

nachricht Chances to treat childhood dementia
24.07.2017 | Julius-Maximilians-Universität Würzburg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA mission surfs through waves in space to understand space weather

25.07.2017 | Physics and Astronomy

Strength of tectonic plates may explain shape of the Tibetan Plateau, study finds

25.07.2017 | Earth Sciences

The dense vessel network regulates formation of thrombocytes in the bone marrow

25.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>