Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mothers’ Cells Can Cause Immunity Illness in Children

26.04.2004


Certain cells from a mother persist in their children’s bodies and can provoke an immune response in which the child’s body attacks itself, according to Mayo Clinic research published in the current issue of the Journal of Immunology (http://www.jimmunol.org). The findings are important not only in seeking the cause and treatments of this disease, but also in understanding an entire class of autoimmune disorders.



Juvenile dermatomyositis (der-mat-o-my-o-SITE-us), or JDM, is a rare muscle-damaging condition that causes a child’s immune system to attack the body, as if it were an invading life form. Muscles deteriorate and the child becomes weak and fragile. There is no cure for JDM. Current treatments include medication, physical therapy and added nutrition.

“The key aspect of our study suggests a mechanism for the disease, and deepens our understanding of autoimmune disorders in general,” says pediatrician and lead investigator Ann Reed, M.D. “And because we studied a larger population of JDM patients and control groups than has ever been studied, we can feel confident in our results.”


Significance of the Mayo Clinic Research

In the largest study of its kind, Mayo Clinic researchers examined 72 JDM patients, with an average age of 10. They compared them to siblings who did not have the disease, as well as to a control group of healthy children. Several key findings emerged:
  • Most JDM patients carry a particular gene (labeled HLA) which they received from their mother during pregnancy.
  • When a child has the HLA gene on a mother’s cell, it triggers an immune response against the child.
  • These cells may be part of the mechanism that causes JDM.

Researchers have known for years that fetal cells can be found in women several years after giving birth. They have thought these may contribute to the development of autoimmune diseases in women during and after their childbearing years. In the current study, the Mayo Clinic group looked at the opposite situation: persistence of maternal cells in children.

In the Mayo Clinic study, 83 percent of JDM patients had cells from their mother. This compares to 23 percent of their unaffected siblings who had maternal cells, and 17 percent of healthy children who had maternal cells in their blood. The presence of this maternal (also called “chimeric”) cell is strongly associated with a particular genetic makeup of the mother. Children with JDM may suffer organ failure in the same way transplant patients often do. Because of this resemblance to a type of organ rejection disease, the Mayo Clinic team investigated the idea that “non-self” or chemeric cells may play a role in initiating JDM.

The Mayo Clinic researchers discovered two new aspects of chimeric cells. First, they remain in the offspring after birth and are related to the HLA genes, and second, chimeric cells are not merely present in the children — but they are active, as shown by the attacks they mount against the child’s body.



JDM causes inflammation of the blood vessels under the muscle and skin. This results in muscle damage, as well as in tissue changes of skin over the eyelids, finger joints and knuckles. Symptoms appear gradually and include: muscle pain and tenderness; difficulty swallowing, which results in weight loss; irritability; fatigue; fever; rash around the eyelids, finger joints, knuckles, elbows, ankles or knees.

Diagnosis may involve blood tests to detect muscle enzymes and markers of inflammation; an electromyography (EMG) to assess nerve or muscle damage; muscle biopsy for examination; X-rays; and MRI. Current treatments include medications to reduce inflammation and skin rashes; physical and occupational therapy to improve muscle function; and nutritional support.

[Reed, A.M., McNallan, K., Wettstein, P., Vehe, R., and Ober, C. (2004). Does HLA-dependent chimerism underlie the pathogenesis of juvenile dermatomyositis? J. Immunol. 172, 5041-5046.]

Contact:
Bob Nellis
507-284-5005 (days)
507-284-2511 (evenings)
e-mail: newsbureau@mayo.edu

Bob Nellis | Mayo Clinic
Further information:
http://www.mayoclinic.org/news2004-rst/2239.html
http://www.jimmunol.org

More articles from Health and Medicine:

nachricht Hot cars can hit deadly temperatures in as little as one hour
24.05.2018 | Arizona State University

nachricht 3D images of cancer cells in the body: Medical physicists from Halle present new method
16.05.2018 | Martin-Luther-Universität Halle-Wittenberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>