Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mothers’ Cells Can Cause Immunity Illness in Children

26.04.2004


Certain cells from a mother persist in their children’s bodies and can provoke an immune response in which the child’s body attacks itself, according to Mayo Clinic research published in the current issue of the Journal of Immunology (http://www.jimmunol.org). The findings are important not only in seeking the cause and treatments of this disease, but also in understanding an entire class of autoimmune disorders.



Juvenile dermatomyositis (der-mat-o-my-o-SITE-us), or JDM, is a rare muscle-damaging condition that causes a child’s immune system to attack the body, as if it were an invading life form. Muscles deteriorate and the child becomes weak and fragile. There is no cure for JDM. Current treatments include medication, physical therapy and added nutrition.

“The key aspect of our study suggests a mechanism for the disease, and deepens our understanding of autoimmune disorders in general,” says pediatrician and lead investigator Ann Reed, M.D. “And because we studied a larger population of JDM patients and control groups than has ever been studied, we can feel confident in our results.”


Significance of the Mayo Clinic Research

In the largest study of its kind, Mayo Clinic researchers examined 72 JDM patients, with an average age of 10. They compared them to siblings who did not have the disease, as well as to a control group of healthy children. Several key findings emerged:
  • Most JDM patients carry a particular gene (labeled HLA) which they received from their mother during pregnancy.
  • When a child has the HLA gene on a mother’s cell, it triggers an immune response against the child.
  • These cells may be part of the mechanism that causes JDM.

Researchers have known for years that fetal cells can be found in women several years after giving birth. They have thought these may contribute to the development of autoimmune diseases in women during and after their childbearing years. In the current study, the Mayo Clinic group looked at the opposite situation: persistence of maternal cells in children.

In the Mayo Clinic study, 83 percent of JDM patients had cells from their mother. This compares to 23 percent of their unaffected siblings who had maternal cells, and 17 percent of healthy children who had maternal cells in their blood. The presence of this maternal (also called “chimeric”) cell is strongly associated with a particular genetic makeup of the mother. Children with JDM may suffer organ failure in the same way transplant patients often do. Because of this resemblance to a type of organ rejection disease, the Mayo Clinic team investigated the idea that “non-self” or chemeric cells may play a role in initiating JDM.

The Mayo Clinic researchers discovered two new aspects of chimeric cells. First, they remain in the offspring after birth and are related to the HLA genes, and second, chimeric cells are not merely present in the children — but they are active, as shown by the attacks they mount against the child’s body.



JDM causes inflammation of the blood vessels under the muscle and skin. This results in muscle damage, as well as in tissue changes of skin over the eyelids, finger joints and knuckles. Symptoms appear gradually and include: muscle pain and tenderness; difficulty swallowing, which results in weight loss; irritability; fatigue; fever; rash around the eyelids, finger joints, knuckles, elbows, ankles or knees.

Diagnosis may involve blood tests to detect muscle enzymes and markers of inflammation; an electromyography (EMG) to assess nerve or muscle damage; muscle biopsy for examination; X-rays; and MRI. Current treatments include medications to reduce inflammation and skin rashes; physical and occupational therapy to improve muscle function; and nutritional support.

[Reed, A.M., McNallan, K., Wettstein, P., Vehe, R., and Ober, C. (2004). Does HLA-dependent chimerism underlie the pathogenesis of juvenile dermatomyositis? J. Immunol. 172, 5041-5046.]

Contact:
Bob Nellis
507-284-5005 (days)
507-284-2511 (evenings)
e-mail: newsbureau@mayo.edu

Bob Nellis | Mayo Clinic
Further information:
http://www.mayoclinic.org/news2004-rst/2239.html
http://www.jimmunol.org

More articles from Health and Medicine:

nachricht Study suggests possible new target for treating and preventing Alzheimer's
02.12.2016 | Oregon Health & Science University

nachricht The first analysis of Ewing's sarcoma methyloma opens doors to new treatments
01.12.2016 | IDIBELL-Bellvitge Biomedical Research Institute

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>