Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Seeking a mechanical solution to nation’s number-one children’s illness

26.02.2004


Biomedical engineers at Lehigh University and Children’s Hospital of Pittsburgh probe causes of eustachian tube dysfunction in hopes of finding new treatments for ear infections



It will come as no surprise to parents that the most common illness among small children in America today is the middle-ear infection.

Each year, Americans spend $5 billion on ear infections. Doctors often prescribe two different antibiotics for the same infection. For more serious cases, they perform 500,000-plus surgeries annually, by inserting a tube in the ear drum to alleviate pressure caused by infections.


Nonetheless, about 20 percent of children have repeated episodes of ear infections that persist into adolescence and even adulthood. Chronic infections can lead to loss of hearing and balance, as well as to more critical inner-ear infections.

Meanwhile, researchers scramble to develop new antibiotics as bacteria become resistant to existing drugs.

Samir Ghadiali, professor of mechanical engineering and mechanics at Lehigh University in Bethlehem, Pa., thinks there is a better way to tackle the problem.

Ghadiali, a member of Lehigh’s Bioengineering and Life Sciences Program, studies the biomechanical and biophysical properties that govern the eustachian tube, which connects the middle ear to the back of the nose and the upper throat and which helps to regulate air pressure inside the ear.

Ghadiali’s work is an example of the growing role played by engineers in the quest to find and test new remedies for medical problems.

Although eustachian tube dysfunction is the primary cause of middle-ear disease, he says, antibiotics and ear tubes do not seek to improve the tube’s function.

"The goal of our research is to identify the causes of eustachian tube dysfunction," says Ghadiali. "We hope this leads to the development of novel treatment therapies that target the underlying cause of middle-ear disease."

The eustachian tube is a complex system of muscle, cartilage, and fat tissue. In healthy adults, it opens and closes three or four times a day, and more frequently when an excursion into higher altitudes causes a change in air pressure and triggers the ears to pop. An infection causes the ears to pop more frequently, but a more serious affliction may prevent the eustachian tube from opening and closing altogether.

Ghadiali applies engineering principles, such as fluid dynamics and solid mechanics, and engineering tools, including finite element analysis and mathematical modeling, to simulate how the eustachian tube opens.

"If we can open the eustachian tube," he says, "this will help prevent bacteria from accumulating and inflammation from occurring in the middle ear. An infection may clear up regardless of the antibiotic. This will decrease the number of pills that doctors need to prescribe."

Ghadiali collaborates with doctors and medical researchers at Children’s Hospital of Pittsburgh (CHP), where he is a former research professor. At CHP, Ghadiali designed a testing apparatus to measure the mechanical properties of the eustachian tube. He also developed mathematical models to interpret and quantify those properties.

Mathematical models, says Ghadiali, allow researchers to study the eustachian system more efficiently and across a much wider range of situations than can be done by merely doing physical experiments in a laboratory. The models also enable researchers to change the parameters of their experiments in a more precise manner.

After researchers run a computer simulation on their model, says Ghadiali, they do a corresponding physical experiment in the lab to see how closely their results match. If a simulation faithfully reproduces the experiments, the model on which it is based can be used in other tests.

One goal of Ghadiali’s research is to answer a question that has long baffled doctors - why the eustachian tube opens and closes easily in some people and not in others.

Engineers, he says, can answer that question by modeling the functioning of a healthy eustachian tube and using the model to predict the physical behavior of a diseased tube.

"Up until recently, researchers have visualized the ear’s interior and speculated why the eustachian tube does or does not open," Ghadiali says. "We are attempting to push past this limitation by taking the same imaging data [from people who do not have ear infections] and creating mathematical models. By going from the image to the model, we can simulate whether or not the tube will open and we can quantify certain parameters, such as how long the tube will stay open."

Ghadiali also hopes to apply his models to each of the six or seven distinct "patient populations" identified by doctors as having eustachian tubes that, for differing reasons, resist opening. By learning why the tube does not open in a specific group, he says, researchers believe they can fashion a solution for that particular group.

Chronic ear infections are often a developmental phenomenon, Ghadiali says, because anatomy changes as a person ages. Ghadiali and his colleagues are examining children from a few months to 2 years old, those aged 2 to 6, those aged 7 to 12, and teenagers, as well as patients who have undergone cleft-palate surgeries, another group which is prone to chronic infections.

From a mechanical engineering standpoint, says Ghadiali, many physical parameters could cause ear infections. These include the elastic properties of tissues, the size of tissues, and the adhesion properties on the surface of the eustachian tubes.

"We don’t know which of these are crucial in the different patient populations," says Ghadiali. "Until we do, we’re operating in the dark. We can design therapies, such as tissue engineering to modify elasticity of tissues, but we don’t know which therapy to use."

Ghadiali is also investigating, at the molecular level, the mucus buildup that is triggered by the presence of certain proteins and that could play a role in ear infections.

"We are enhancing all of our mathematical models to account for these molecular-adhesion forces. This is a multi-scale fluid dynamics problem."

Ghadiali has a Ph.D. in biomedical engineering from Tulane University.

Kurt Pfitzer | EurekAlert!
Further information:
http://www.lehigh.edu/

More articles from Health and Medicine:

nachricht Correct connections are crucial
26.06.2017 | Charité - Universitätsmedizin Berlin

nachricht One gene closer to regenerative therapy for muscular disorders
01.06.2017 | Cincinnati Children's Hospital Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Touch Displays WAY-AX and WAY-DX by WayCon

27.06.2017 | Power and Electrical Engineering

Drones that drive

27.06.2017 | Information Technology

Ultra-compact phase modulators based on graphene plasmons

27.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>