Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Two proteins may help prevent Alzheimer’s brain plaques


A study led by researchers at Washington University School of Medicine in St. Louis suggests two proteins work together in mice to prevent formation of brain plaques characteristic of Alzheimer’s disease.

The proteins, apolipoprotein E (apoE) and clusterin, appear to act as "chaperones" orchestrating the clearance of potentially hazardous molecules out of the brain. Ironically, these proteins also have been implicated in a key stage of plaque formation. The study appears in the Jan. 22 issue of the journal Neuron.

"This is one of the first demonstrations in living animals that these proteins affect amyloid clearance," says David H. Holtzman, M.D., the Andrew B. and Gretchen P. Jones Professor and head of the Department of Neurology. "Our findings suggest it is worthwhile to explore the use of drugs or therapies to alter or perhaps increase the expression of these proteins as a potential treatment for Alzheimer’s disease."

Holtzman, who also is the Charlotte and Paul Hagemann Professor of Neurology and professor of molecular biology and pharmacology, led the study; Ronald DeMattos, Ph.D., formerly an instructor in neurology, and John R. Cirrito, a graduate student in neuroscience, are co-first authors. The team collaborated with Eli Lilly and Company, where DeMattos now works.

A key step in the development of Alzheimer’s disease is the formation of brain plaques. Studies suggest these plaques form when the protein amyloid beta (Abeta) is converted from its soluble to its insoluble form and coalesces into hair-shaped threads called fibrils. Unable to dissolve or be cleared out of the brain, the fibrils eventually clump together and become the amyloid plaques that are a hallmark of Alzheimer’s.

In previous studies, Holtzman’s team was instrumental in showing both apoE and clusterin promote the formation of these fibrils. Their new paper confirms that in mice genetically engineered to develop Alzheimer’s disease-like brain plaques, those without either apoE or clusterin developed fewer fibrils.

The team therefore expected mice lacking both proteins would develop even fewer deposits. However, the opposite was true. Moreover, fibrils in animals lacking both proteins developed significantly earlier in life and resulted in the more advanced amyloid plaques. Such extreme Abeta deposition at a young age is akin to that in humans with the rare, genetic form of the disease called familial Alzheimer’s.

"This was an unexpected and striking result," Holtzman says. "Though at first counter-intuitive, it implies that apoE and clusterin cooperate to suppress Abeta deposition."

In addition to increased amounts of Abeta in brain tissue, the team also found abnormally high levels in the fluid surrounding individual brain cells and in the fluid surrounding the entire brain. In contrast, levels of Abeta in the blood were not abnormally high.

Combined, the results suggest the two proteins not only play a role in the development of fibrils, but also in the clearance of Abeta from brain tissue and surrounding fluid. Without its chaperones, Abeta protein settles in the brain and eventually clusters into plaques.

According to Holtzman, the next step is to determine whether human forms of apoE and clusterin also delay or prevent the development of plaques in the mouse model and to explore the potential for drugs or gene therapy to reverse plaque formation in mice.

DeMattos RB, Cirrito JR, Parsadanian M, May PC, O’Dell MA, Tayler JW, Harmony JAK, Aronow BJ, Bales KR, Paul SM, Holtzman DM. ApoE and clusterin cooperatively suppress Abeta levels and deposition: Evidence at apoE regulates extracellular Abeta metabolism in vivo. Neuron, Jan. 22, 2004.

Funding from the National Institutes of Health, MetLife Foundation and Eli Lilly and Company supported this research.

The full-time and volunteer faculty of Washington University School of Medicine are the physicians and surgeons of Barnes-Jewish and St. Louis Children’s hospitals. The School of Medicine is one of the leading medical research, teaching and patient-care institutions in the nation. Through its affiliations with Barnes-Jewish and St. Louis Children’s hospitals, the School of Medicine is linked to BJC HealthCare.

Gila Z. Reckess | WUSTL
Further information:

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>