Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Gardens have the potential to improve health, research shows


Adding greenery in the form of a garden to the often sterile, cold environment of hospitals and other healthcare facilities can reduce stress in patients, visitors and staff and even lessen a patient’s pain in some instances, says a Texas A&M University authority on health care design.

Roger Ulrich, professor and director of the Center for Health Systems & Design at Texas A&M’s College of Architecture, says a growing body of research is giving credibility to the widely held belief that nature can improve health.

"Knowledge and research into fields such as health psychology and behavioral medicine have demonstrated that there need not be anything magical about the processes through which gardens in healthcare facilities should be capable of reducing stress and improving patients’ health," Ulrich says.

Ulrich’s research focuses on the effects of built and natural environments on people’s psychological well-being, stress and health, and he says more and more healthcare facilities are incorporating "healing gardens" into their designs as part of an international movement seeking to improve the quality of healthcare.

Healing gardens, he explains, refer to a variety of garden features that have in common a tendency to foster restoration from stress and have other positive influences on patients, visitors, staff and caregivers. They feature prominent amounts of real nature content, such as green vegetation, flowers and water and can be outdoor or indoor spaces, varying in size.

"Supportive gardens in healthcare facilities potentially can be an important adjunct to the healing effects of drugs and other modern medical technology, and help improve the overall quality of care," Ulrich says.

What’s more, research has linked poor design – or psychologically inappropriate physical surroundings – to detrimental health effects such as higher anxiety, delirium, increased need for pain medication, elevated blood pressure and sleeplessness, Ulrich notes.

Probable advantages associated with healing gardens include reduced stress and anxiety in patients, visitors and staff, reduction in depression, higher reported quality of life for chronic and terminal patients, improved way-finding in facilities and reduced pain in patients, he notes. Gardenlike scenes can apparently reduce pain, he explains, as indicated by patient ratings of perceived pain and observed intake of pain-relieving medications.

Other potential advantages, he says, include reduced provider costs because some patients need fewer doses of costly strong pain medication and the length of stay is shorter for some patients. Increased patient mobility and independence, higher patient satisfaction with facility and increased staff job satisfaction are also potential advantages.

The belief that nature is beneficial for people with illness dates back centuries and is consistent across cultures, Ulrich notes. There are several theories, he says, that attempt to explain people’s affinity for nature.

Learning theories hypothesize that people associate relaxation with nature, for example during vacations. They acquire stressful associations with urban environments because of aspects like traffic, work and crime. Other scientists argue that built environments are overly taxing to people’s senses because of high levels of noise and visual complexity. Nature settings are not as arousing and therefore less stressful.

Proponents of an evolutionary theory believe that humans may have a genetic readiness to respond positively to nature such as vegetation and water because these things were favorable to survival during some two to three million years of evolution.

Whatever the case may be, the capability of gardens to improve health arises mainly from their effectiveness as stress reducing and buffering resources, Ulrich notes.

Stress is a widespread problem for patients, he explains. The vast majority of patients with illness suffer from stress and many suffer from acute stress. Many aspects of hospitalization are stressful to patients, such as impending surgery, pain and unknown diagnostic procedures, depersonalization, disruption of social relationships and job activities. Stress is also a problem for families of patients and healthcare staff.

And while gardens have the potential to help patients and staff cope with stressful scenarios, not any garden will do, Ulrich emphasizes. To be effective in reducing stress, Ulrich has found that gardens must address four main areas: promoting a sense of control, encouraging social support, offering opportunities for physical movement and providing access to natural distractions.

"If a researcher had seriously proposed two decades ago that gardens could improve medical outcomes in healthcare facilities, the position would have met with skepticism by most behavioral scientists and probably with derision by many physicians," Ulrich notes.

Contact: Roger S. Ulrich, 979-845-7009 or via email: or Ryan A. Garcia, 979-845-4680 or via email:

Ryan A. Garcia | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht Resolving the mystery of preeclampsia
21.10.2016 | Universitätsklinikum Magdeburg

nachricht New potential cancer treatment using microwaves to target deep tumors
12.10.2016 | University of Texas at Arlington

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>