Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gardens have the potential to improve health, research shows

24.11.2003


Adding greenery in the form of a garden to the often sterile, cold environment of hospitals and other healthcare facilities can reduce stress in patients, visitors and staff and even lessen a patient’s pain in some instances, says a Texas A&M University authority on health care design.



Roger Ulrich, professor and director of the Center for Health Systems & Design at Texas A&M’s College of Architecture, says a growing body of research is giving credibility to the widely held belief that nature can improve health.

"Knowledge and research into fields such as health psychology and behavioral medicine have demonstrated that there need not be anything magical about the processes through which gardens in healthcare facilities should be capable of reducing stress and improving patients’ health," Ulrich says.


Ulrich’s research focuses on the effects of built and natural environments on people’s psychological well-being, stress and health, and he says more and more healthcare facilities are incorporating "healing gardens" into their designs as part of an international movement seeking to improve the quality of healthcare.

Healing gardens, he explains, refer to a variety of garden features that have in common a tendency to foster restoration from stress and have other positive influences on patients, visitors, staff and caregivers. They feature prominent amounts of real nature content, such as green vegetation, flowers and water and can be outdoor or indoor spaces, varying in size.

"Supportive gardens in healthcare facilities potentially can be an important adjunct to the healing effects of drugs and other modern medical technology, and help improve the overall quality of care," Ulrich says.

What’s more, research has linked poor design – or psychologically inappropriate physical surroundings – to detrimental health effects such as higher anxiety, delirium, increased need for pain medication, elevated blood pressure and sleeplessness, Ulrich notes.

Probable advantages associated with healing gardens include reduced stress and anxiety in patients, visitors and staff, reduction in depression, higher reported quality of life for chronic and terminal patients, improved way-finding in facilities and reduced pain in patients, he notes. Gardenlike scenes can apparently reduce pain, he explains, as indicated by patient ratings of perceived pain and observed intake of pain-relieving medications.

Other potential advantages, he says, include reduced provider costs because some patients need fewer doses of costly strong pain medication and the length of stay is shorter for some patients. Increased patient mobility and independence, higher patient satisfaction with facility and increased staff job satisfaction are also potential advantages.

The belief that nature is beneficial for people with illness dates back centuries and is consistent across cultures, Ulrich notes. There are several theories, he says, that attempt to explain people’s affinity for nature.

Learning theories hypothesize that people associate relaxation with nature, for example during vacations. They acquire stressful associations with urban environments because of aspects like traffic, work and crime. Other scientists argue that built environments are overly taxing to people’s senses because of high levels of noise and visual complexity. Nature settings are not as arousing and therefore less stressful.

Proponents of an evolutionary theory believe that humans may have a genetic readiness to respond positively to nature such as vegetation and water because these things were favorable to survival during some two to three million years of evolution.

Whatever the case may be, the capability of gardens to improve health arises mainly from their effectiveness as stress reducing and buffering resources, Ulrich notes.

Stress is a widespread problem for patients, he explains. The vast majority of patients with illness suffer from stress and many suffer from acute stress. Many aspects of hospitalization are stressful to patients, such as impending surgery, pain and unknown diagnostic procedures, depersonalization, disruption of social relationships and job activities. Stress is also a problem for families of patients and healthcare staff.

And while gardens have the potential to help patients and staff cope with stressful scenarios, not any garden will do, Ulrich emphasizes. To be effective in reducing stress, Ulrich has found that gardens must address four main areas: promoting a sense of control, encouraging social support, offering opportunities for physical movement and providing access to natural distractions.

"If a researcher had seriously proposed two decades ago that gardens could improve medical outcomes in healthcare facilities, the position would have met with skepticism by most behavioral scientists and probably with derision by many physicians," Ulrich notes.


Contact: Roger S. Ulrich, 979-845-7009 or via email: ulrich@archone.tamu.edu or Ryan A. Garcia, 979-845-4680 or via email: rag@univrel.tamu.edu.

Ryan A. Garcia | EurekAlert!
Further information:
http://www.tamu.edu/

More articles from Health and Medicine:

nachricht Laser activated gold pyramids could deliver drugs, DNA into cells without harm
24.03.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

nachricht What does congenital Zika syndrome look like?
24.03.2017 | University of California - San Diego

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>