Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

First human tests under way of HIV vaccine pioneered at UNC

06.08.2003


The world´s first human test of a vaccine against the prevalent subtype of HIV in sub-Saharan African and Asia, where millions have the virus that causes AIDS, is now under way. The clinical trial uses novel technology pioneered by scientists at the University of North Carolina at Chapel Hill School of Medicine and the U. S. Army Medical Research Institute of Infectious Diseases.



The phase I trial began July 17 at Johns Hopkins University. An adult male, at low risk for HIV infection, was the first of 48 volunteers in the United States to be vaccinated.

Other U.S. sites include Columbia University, Vanderbilt University and the University of Rochester. Sites in South Africa are at the University of Witwatersrand, the Chris Hani Baragwanath Hospital in Soweto and the Medical Research Council in Durban. The two-year trial will involve 48 non-HIV-infected participants in each country at four different dose levels, using a double-blind, placebo-controlled design. The primary endpoint is safety, that the vaccine does not produce significant side effects. Researchers also will look at the vaccine´s ability to induce an immune response.


The vaccine is built around a disabled, safe version of Venezuelan equine encephalitis virus, or VEE. In the wild, this microbe infects horses and is sometimes carried to humans via mosquitoes.

Dr. Robert E. Johnston, professor of microbiology and immunology and director of the newly established Carolina Vaccine Institute, together with department colleague and research professor Dr. Nancy Davis studied VEE for more than 12 years, developing candidate vaccines against the virus. Their work led them to believe the virus could be modified for use as a safe vaccine vector, or delivery system for the vaccine.

Subsequent primate tests showed the technology held promise. Now, with approval from the U.S. Food and Drug Administration and the South African Medicines Control Council, a prototype HIV vaccine based on VEE technology has moved on to a human trial.

Joining Johnston and Davis in designing this "first-generation" HIV vaccine were Dr. Ronald Swanstrom, professor of biochemistry and biophysics and director of the UNC Center for AIDS Research; Dr. Jeffrey Frelinger, professor and chair of microbiology and immunology at UNC; and Drs. David Montefiore of Duke University and Phil Johnson of the Children´s Hospital Research Foundation in Columbus, Ohio. Collaborating scientists in South Africa, Drs. Carolyn Williamson, Lynn Morris and Salim Karim, also were key members of this team effort.

AlphaVax, a Durham-based biotechnology spinoff of UNC, holds the commercial license for the VEE technology from the university and contributed to the design and manufactured the trial vaccine.

"It´s very rare that a basic scientist gets to see something go from a concept to an actual biological product that can be tried in human beings," Johnston said.

"The VEE vector we helped develop is a means of expressing genes - in this case we´re expressing a gene in vivo - inside the person vaccinated. And those gene products then immunize the person against the disease."

The vaccine contains a copy of only a small section of genetic material from HIV and does not include genetic elements needed to reconstitute live HIV, thus precluding the possibility of causing HIV infection. The vaccine material is also designed so that its VEE components cannot generate VEE virus or cause VEE infection.

The vaccine targets cells in lymph nodes, the critical tissue of the immune system. The vector will produce the immunizing protein by expressing "gag," a major protein in the HIV particle. The protein then induces the body to respond immunologically to it.

More advanced versions of the vaccine will include expression of the HIV envelope and polymerase genes.

"We hope to refine this vaccine to the point that if an individual is subsequently exposed to HIV, they will be protected from disease," Johnston said.

"This is a good first start from the standpoint of determining if the vector will work well. We can measure both cell mediated and humoral (antibody) immunity to gag. We´ll be able to see if none or one or both arms of the immune response are activated during the vaccination."

The research collaboration of Johnson, Davis, Swanstrom, Montefiore and Johnson is working on subsequent generations of the vaccine. "We want to see if we can do better both from the delivery side and the gene side," Johnston said.

"I think I can speak for everybody on this team that we are extremely gratified to have this clinical trial opportunity. We´re very hopeful. This is a major milestone."

Contact:

Dr. Robert E. Johnston, rjohnst@med.unc.edu
Les Lang, llang@med.unc.edu

Leslie Lang | EurekAlert!
Further information:
http://www.med.unc.edu

More articles from Health and Medicine:

nachricht Millions through license revenues
27.04.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht New High-Performance Center Translational Medical Engineering
26.04.2017 | Fraunhofer ITEM

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>